Large sample properties of maximum likelihood estimator using moving extremes ranked set sampling

Pub Date : 2024-01-13 DOI:10.1007/s42952-023-00251-2
Han Wang, Wangxue Chen, Bingjie Li
{"title":"Large sample properties of maximum likelihood estimator using moving extremes ranked set sampling","authors":"Han Wang, Wangxue Chen, Bingjie Li","doi":"10.1007/s42952-023-00251-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the maximum likelihood estimator (MLE) for the parameter <span>\\(\\theta\\)</span> in the probability density function <span>\\(f(x;\\theta )\\)</span>. We specifically focus on the application of moving extremes ranked set sampling (MERSS) and analyze its properties in large samples. We establish the existence and uniqueness of the MLE for two common distributions when utilizing MERSS. Our theoretical analysis demonstrates that the MLE obtained through MERSS is, at the very least, as efficient as the MLE obtained through simple random sampling with an equivalent sample size. To substantiate these theoretical findings, we conduct numerical experiments. Furthermore, we explore the implications of imperfect ranking and provide a practical illustration by applying our approach to a real dataset.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-023-00251-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the maximum likelihood estimator (MLE) for the parameter \(\theta\) in the probability density function \(f(x;\theta )\). We specifically focus on the application of moving extremes ranked set sampling (MERSS) and analyze its properties in large samples. We establish the existence and uniqueness of the MLE for two common distributions when utilizing MERSS. Our theoretical analysis demonstrates that the MLE obtained through MERSS is, at the very least, as efficient as the MLE obtained through simple random sampling with an equivalent sample size. To substantiate these theoretical findings, we conduct numerical experiments. Furthermore, we explore the implications of imperfect ranking and provide a practical illustration by applying our approach to a real dataset.

分享
查看原文
使用移动极值排序集抽样的最大似然估计器的大样本特性
在本文中,我们研究了概率密度函数 \(f(x;\theta )\) 中参数 \(\theta\) 的最大似然估计器(MLE)。我们特别关注移动极值排序集采样(MERSS)的应用,并分析其在大样本中的特性。在使用 MERSS 时,我们为两种常见分布建立了 MLE 的存在性和唯一性。我们的理论分析表明,通过 MERSS 获得的 MLE 至少与通过样本量相当的简单随机抽样获得的 MLE 一样有效。为了证实这些理论发现,我们进行了数值实验。此外,我们还探讨了不完美排序的影响,并通过将我们的方法应用于真实数据集进行了实际说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信