Enhanced Stability in Quantum Optimal Transport Pseudometrics: From Hartree to Vlasov-Poisson

Mikaela Iacobelli, Laurent Lafleche
{"title":"Enhanced Stability in Quantum Optimal Transport Pseudometrics: From Hartree to Vlasov-Poisson","authors":"Mikaela Iacobelli, Laurent Lafleche","doi":"arxiv-2401.05773","DOIUrl":null,"url":null,"abstract":"In this paper we establish almost-optimal stability estimates in quantum\noptimal transport pseudometrics for the semiclassical limit of the Hartree\ndynamics to the Vlasov-Poisson equation, in the regime where the solutions have\nbounded densities. We combine Golse and Paul's method from [Arch. Ration. Mech.\nAnal. 223:57-94, 2017], which uses a semiclassical version of the optimal\ntransport distance and which was adapted to the case of the Coulomb and\ngravitational interactions by the second author in [J. Stat. Phys. 177:20-60,\n2019], with a new approach developed by the first author in [Arch. Ration.\nMech. Anal. 244:27-50, 2022] to quantitatively improve stability estimates in\nkinetic theory.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.05773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we establish almost-optimal stability estimates in quantum optimal transport pseudometrics for the semiclassical limit of the Hartree dynamics to the Vlasov-Poisson equation, in the regime where the solutions have bounded densities. We combine Golse and Paul's method from [Arch. Ration. Mech. Anal. 223:57-94, 2017], which uses a semiclassical version of the optimal transport distance and which was adapted to the case of the Coulomb and gravitational interactions by the second author in [J. Stat. Phys. 177:20-60, 2019], with a new approach developed by the first author in [Arch. Ration. Mech. Anal. 244:27-50, 2022] to quantitatively improve stability estimates in kinetic theory.
量子优化传输伪计量学中的增强稳定性:从哈特里到弗拉索夫-泊松
在本文中,我们为哈特里德动力学对弗拉索夫-泊松方程的半经典极限建立了量子最优传输伪计量学中的几乎最优的稳定性估计,在该机制中,解具有有界密度。我们将第二作者在[J. Stat. Phys. 177:20-60,2019]中改编为库仑和引力相互作用情况的[Arch. Ration. Mech. Anal. 223:57-94,2017]中使用最优传输距离半经典版本的 Golse 和 Paul 方法,与第一作者在[Arch. Ration. Mech. Anal. 244:27-50,2022]中开发的新方法相结合,定量改进动力学理论中的稳定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信