Just-likely intersections on Hilbert modular surfaces

IF 1.3 2区 数学 Q1 MATHEMATICS
{"title":"Just-likely intersections on Hilbert modular surfaces","authors":"","doi":"10.1007/s00208-023-02793-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we prove an intersection-theoretic result pertaining to curves in certain Hilbert modular surfaces in positive characteristic <em>p</em>. Specifically, let <em>C</em>, <em>D</em> be two proper curves inside a mod <em>p</em> Hilbert modular surface associated to a real quadratic field split at <em>p</em>. Suppose that the curves are generically ordinary, and that at least one of them is ample. Then, the set of points in <span> <span>\\((x,y) \\in C\\times D\\)</span> </span> with abelian surfaces parameterized by <em>x</em> and <em>y</em> isogenous to each other is Zariski dense in <span> <span>\\(C\\times D\\)</span> </span>, thereby proving a case of a just-likely intersection conjecture. We also compute the change in Faltings height under appropriate <em>p</em>-power isogenies of abelian surfaces with real multiplication over characteristic <em>p</em> global fields.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"12 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-023-02793-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove an intersection-theoretic result pertaining to curves in certain Hilbert modular surfaces in positive characteristic p. Specifically, let CD be two proper curves inside a mod p Hilbert modular surface associated to a real quadratic field split at p. Suppose that the curves are generically ordinary, and that at least one of them is ample. Then, the set of points in \((x,y) \in C\times D\) with abelian surfaces parameterized by x and y isogenous to each other is Zariski dense in \(C\times D\) , thereby proving a case of a just-likely intersection conjecture. We also compute the change in Faltings height under appropriate p-power isogenies of abelian surfaces with real multiplication over characteristic p global fields.

希尔伯特模态面上的恰好相交
摘要 本文证明了与正特征 p 的某些希尔伯特模面中的曲线有关的交点理论结果。具体地说,设 C,D 是与实二次型场 p 分割相关的模 p 希尔伯特模面中的两条适当曲线。那么,在 \((x,y) \in C\times D\) 中以 x 和 y 为参数的无常曲面彼此同源的点集就是 \(C\times D\) 中的扎里斯基密集点,从而证明了一个 "可能交点猜想"。我们还计算了在特征 p 全局域上具有实乘法的无常曲面的适当 p-power 同源下的 Faltings 高度变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信