Exponential decay estimates for fundamental matrices of generalized Schrödinger systems

IF 1.3 2区 数学 Q1 MATHEMATICS
Joshua Isralowitz, Blair Davey
{"title":"Exponential decay estimates for fundamental matrices of generalized Schrödinger systems","authors":"Joshua Isralowitz, Blair Davey","doi":"10.1007/s00208-023-02791-8","DOIUrl":null,"url":null,"abstract":"<p>In this article, we investigate systems of generalized Schrödinger operators and their fundamental matrices. More specifically, we establish the existence of such fundamental matrices and then prove sharp upper and lower exponential decay estimates for them. The Schrödinger operators that we consider have leading coefficients that are bounded and uniformly elliptic, while the zeroth-order terms are assumed to be nondegenerate and belong to a reverse Hölder class of matrices. In particular, our operators need not be self-adjoint. The exponential bounds are governed by the so-called upper and lower Agmon distances associated to the reverse Hölder matrix that serves as the potential function. Furthermore, we thoroughly discuss the relationship between this new reverse Hölder class of matrices, the more classical matrix <span>\\({\\mathcal {A}_{p,\\infty }}\\)</span> class, and the matrix <span>\\({\\mathcal {A}_\\infty }\\)</span> class introduced by Dall’Ara (J Funct Anal 268(12):3649–3679, 2015).</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"62 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-023-02791-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate systems of generalized Schrödinger operators and their fundamental matrices. More specifically, we establish the existence of such fundamental matrices and then prove sharp upper and lower exponential decay estimates for them. The Schrödinger operators that we consider have leading coefficients that are bounded and uniformly elliptic, while the zeroth-order terms are assumed to be nondegenerate and belong to a reverse Hölder class of matrices. In particular, our operators need not be self-adjoint. The exponential bounds are governed by the so-called upper and lower Agmon distances associated to the reverse Hölder matrix that serves as the potential function. Furthermore, we thoroughly discuss the relationship between this new reverse Hölder class of matrices, the more classical matrix \({\mathcal {A}_{p,\infty }}\) class, and the matrix \({\mathcal {A}_\infty }\) class introduced by Dall’Ara (J Funct Anal 268(12):3649–3679, 2015).

广义薛定谔系统基本矩阵的指数衰减估计值
本文研究广义薛定谔算子系统及其基矩阵。更具体地说,我们确定了这些基矩阵的存在性,然后证明了它们的尖锐的上、下指数衰减估计值。我们考虑的薛定谔算子具有有界和均匀椭圆的前导系数,而零阶项被假定为非enerate,属于反向霍尔德矩阵类。特别是,我们的算子不必是自交的。指数边界由与作为势函数的反向霍尔德矩阵相关的所谓上阿格蒙距离和下阿格蒙距离决定。此外,我们还深入讨论了这一新的反向赫尔德矩阵类、更经典的矩阵\({\mathcal {A}_{p,\infty }}\) 类和 Dall'Ara 引入的矩阵\({\mathcal {A}_\infty }\) 类之间的关系(J Funct Anal 268(12):3649-3679, 2015)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信