Post-process correction improves the accuracy of satellite PM2.5 retrievals

IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, Antti Lipponen
{"title":"Post-process correction improves the accuracy of satellite PM2.5 retrievals","authors":"Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, Antti Lipponen","doi":"10.5194/egusphere-2023-2635","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Estimates of PM<sub>2.5</sub> levels are crucial for monitoring air quality and studying the epidemiological impact of air quality on the population. Currently, the most precise measurements of PM<sub>2.5</sub> are obtained from ground stations, resulting in limited spatial coverage. In this study, we consider satellite-based PM<sub>2.5</sub> retrieval, which involves conversion of high-resolution satellite retrieval of Aerosol Optical Depth (AOD) into high-resolution PM<sub>2.5</sub> retrieval. To improve the accuracy of the AOD to PM<sub>2.5</sub> conversion, we employ the machine learning based post-process correction to correct the AOD-to-PM conversion ratio derived from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis model data. The post-process correction approach utilizes a fusion and downscaling of satellite observation and retrieval data, MERRA-2 reanalysis data, various high resolution geographical indicators, meteorological data and ground station observations for learning a predictor for the approximation error in the AOD to PM<sub>2.5</sub> conversion ratio. The corrected conversion ratio is then applied to estimate PM<sub>2.5</sub> levels given the high-resolution satellite AOD retrieval data derived from Sentinel-3 observations. Our model produces PM<sub>2.5</sub> estimates with a spatial resolution of 100 meters at satellite overpass times. Additionally, we have incorporated an ensemble of neural networks to provide error envelopes for machine learning related uncertainty in the PM<sub>2.5</sub> estimates.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"103 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2023-2635","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Estimates of PM2.5 levels are crucial for monitoring air quality and studying the epidemiological impact of air quality on the population. Currently, the most precise measurements of PM2.5 are obtained from ground stations, resulting in limited spatial coverage. In this study, we consider satellite-based PM2.5 retrieval, which involves conversion of high-resolution satellite retrieval of Aerosol Optical Depth (AOD) into high-resolution PM2.5 retrieval. To improve the accuracy of the AOD to PM2.5 conversion, we employ the machine learning based post-process correction to correct the AOD-to-PM conversion ratio derived from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis model data. The post-process correction approach utilizes a fusion and downscaling of satellite observation and retrieval data, MERRA-2 reanalysis data, various high resolution geographical indicators, meteorological data and ground station observations for learning a predictor for the approximation error in the AOD to PM2.5 conversion ratio. The corrected conversion ratio is then applied to estimate PM2.5 levels given the high-resolution satellite AOD retrieval data derived from Sentinel-3 observations. Our model produces PM2.5 estimates with a spatial resolution of 100 meters at satellite overpass times. Additionally, we have incorporated an ensemble of neural networks to provide error envelopes for machine learning related uncertainty in the PM2.5 estimates.
后处理校正提高了卫星 PM2.5 数据检索的准确性
摘要PM2.5 的估计值对于监测空气质量和研究空气质量对人口的流行病学影响至关重要。目前,PM2.5 的最精确测量是通过地面站获得的,因此空间覆盖范围有限。在本研究中,我们考虑了基于卫星的 PM2.5 检索,包括将高分辨率卫星气溶胶光学深度(AOD)检索转换为高分辨率 PM2.5 检索。为了提高气溶胶光学深度(AOD)到 PM2.5 的转换精度,我们采用了基于机器学习的后处理校正方法,以校正从现代-年代研究和应用回顾分析第 2 版(MERRA-2)再分析模型数据中得出的气溶胶光学深度(AOD)到 PM2.5 的转换率。后处理校正方法利用卫星观测和检索数据、MERRA-2 再分析数据、各种高分辨率地理指标、气象数据和地面站观测数据的融合和降尺度,来学习 AOD 与 PM2.5 转换比近似误差的预测因子。然后,根据哨兵-3 号卫星观测数据得出的高分辨率卫星 AOD 检索数据,将修正后的转换率用于估算 PM2.5 水平。我们的模型在卫星越过时间产生的 PM2.5 估计值空间分辨率为 100 米。此外,我们还加入了神经网络集合,为 PM2.5 估计值中与机器学习相关的不确定性提供误差包络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Measurement Techniques
Atmospheric Measurement Techniques METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
7.10
自引率
18.40%
发文量
331
审稿时长
3 months
期刊介绍: Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere. The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信