{"title":"Can Glycerol Carbonate be Synthesized Without a Catalyst?","authors":"Sanjib Kumar Karmee","doi":"10.2174/0115701786280075231211094705","DOIUrl":null,"url":null,"abstract":": Biodiesel and oleo-chemical industries have been producing huge quantities of glycerol as a by-product. Value-added products can be synthesized from glycerol through different chemical and enzymatic reactions, such as oxidation, carbonylation, reforming, acetalyzation, etherification, dehydration, hydrogenolysis, hydrolysis, esterification, and transesterification. Glycerol is a low-cost polyol that can be converted into glycerol carbonate, which has potential applications in polymer and biobased non-isocyanate polyurethanes industries (Bio-NIPUs). The present contribution is the first of its kind to report on the synthesis of glycerol carbonate via catalyst and solvent-free transesterification of glycerol with dimethyl carbonate under conventional as well as microwave heating. Additionally, a comparative study of conventional and microwave-assisted transesterification was performed. Under conventional heating, 78% glycerol carbonate is obtained at 120 o C in 36 hours, whereas, using microwaves, 92% of glycerol carbonate can be achieved in 30 minutes. Presently, biomass-based heterogeneous materials are used in catalysis due to their importance within the context of sustainability. In line with this, in this work, a series of green catalysts, namely, molecular sieves (MS, 4Å), HβZeolite, Montmorillonite K-10 clay, activated carbon prepared from the shell of groundnut (Arachis hypogaea), and biochar from sawdust pyrolysis were successfully employed. Glycerol carbonate was thoroughly characterized by 1 H and 13C NMR, FT-IR and MS. The method described here is facile and green since the utilization of bioresource (glycerol) for the production of glycerol carbonate is performed under microwave.","PeriodicalId":18116,"journal":{"name":"Letters in Organic Chemistry","volume":"41 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701786280075231211094705","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
: Biodiesel and oleo-chemical industries have been producing huge quantities of glycerol as a by-product. Value-added products can be synthesized from glycerol through different chemical and enzymatic reactions, such as oxidation, carbonylation, reforming, acetalyzation, etherification, dehydration, hydrogenolysis, hydrolysis, esterification, and transesterification. Glycerol is a low-cost polyol that can be converted into glycerol carbonate, which has potential applications in polymer and biobased non-isocyanate polyurethanes industries (Bio-NIPUs). The present contribution is the first of its kind to report on the synthesis of glycerol carbonate via catalyst and solvent-free transesterification of glycerol with dimethyl carbonate under conventional as well as microwave heating. Additionally, a comparative study of conventional and microwave-assisted transesterification was performed. Under conventional heating, 78% glycerol carbonate is obtained at 120 o C in 36 hours, whereas, using microwaves, 92% of glycerol carbonate can be achieved in 30 minutes. Presently, biomass-based heterogeneous materials are used in catalysis due to their importance within the context of sustainability. In line with this, in this work, a series of green catalysts, namely, molecular sieves (MS, 4Å), HβZeolite, Montmorillonite K-10 clay, activated carbon prepared from the shell of groundnut (Arachis hypogaea), and biochar from sawdust pyrolysis were successfully employed. Glycerol carbonate was thoroughly characterized by 1 H and 13C NMR, FT-IR and MS. The method described here is facile and green since the utilization of bioresource (glycerol) for the production of glycerol carbonate is performed under microwave.
期刊介绍:
Aims & Scope
Letters in Organic Chemistry publishes original letters (short articles), research articles, mini-reviews and thematic issues based on mini-reviews and short articles, in all areas of organic chemistry including synthesis, bioorganic, medicinal, natural products, organometallic, supramolecular, molecular recognition and physical organic chemistry. The emphasis is to publish quality papers rapidly by taking full advantage of latest technology for both submission and review of the manuscripts.
The journal is an essential reading for all organic chemists belonging to both academia and industry.