Almost Congruent Triangles

Pub Date : 2024-01-11 DOI:10.1007/s00454-023-00623-9
{"title":"Almost Congruent Triangles","authors":"","doi":"10.1007/s00454-023-00623-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Almost 50 years ago Erdős and Purdy asked the following question: Given <em>n</em> points in the plane, how many triangles can be approximate congruent to equilateral triangles? They pointed out that by dividing the points evenly into three small clusters built around the three vertices of a fixed equilateral triangle, one gets at least <span> <span>\\(\\left\\lfloor \\frac{n}{3} \\right\\rfloor \\cdot \\left\\lfloor \\frac{n+1}{3} \\right\\rfloor \\cdot \\left\\lfloor \\frac{n+2}{3} \\right\\rfloor \\)</span> </span> such approximate copies. In this paper we provide a matching upper bound and thereby answer their question. More generally, for every triangle <em>T</em> we determine the maximum number of approximate congruent triangles to <em>T</em> in a point set of size <em>n</em>. Parts of our proof are based on hypergraph Turán theory: for each point set in the plane and a triangle <em>T</em>, we construct a 3-uniform hypergraph <span> <span>\\(\\mathcal {H}=\\mathcal {H}(T)\\)</span> </span>, which contains no hypergraph as a subgraph from a family of forbidden hypergraphs <span> <span>\\(\\mathcal {F}=\\mathcal {F}(T)\\)</span> </span>. Our upper bound on the number of edges of <span> <span>\\(\\mathcal {H}\\)</span> </span> will determine the maximum number of triangles that are approximate congruent to <em>T</em>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00623-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Almost 50 years ago Erdős and Purdy asked the following question: Given n points in the plane, how many triangles can be approximate congruent to equilateral triangles? They pointed out that by dividing the points evenly into three small clusters built around the three vertices of a fixed equilateral triangle, one gets at least \(\left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n+1}{3} \right\rfloor \cdot \left\lfloor \frac{n+2}{3} \right\rfloor \) such approximate copies. In this paper we provide a matching upper bound and thereby answer their question. More generally, for every triangle T we determine the maximum number of approximate congruent triangles to T in a point set of size n. Parts of our proof are based on hypergraph Turán theory: for each point set in the plane and a triangle T, we construct a 3-uniform hypergraph \(\mathcal {H}=\mathcal {H}(T)\) , which contains no hypergraph as a subgraph from a family of forbidden hypergraphs \(\mathcal {F}=\mathcal {F}(T)\) . Our upper bound on the number of edges of \(\mathcal {H}\) will determine the maximum number of triangles that are approximate congruent to T.

分享
查看原文
几乎全等的三角形
摘要 将近 50 年前,Erdős 和 Purdy 提出了以下问题:给定平面上的 n 个点,有多少个三角形可以近似全等?他们指出,通过把点平均分成围绕固定等边三角形三个顶点的三个小群,至少可以得到(\left\lfloor \frac{n}{3}\cdot \left\lfloor \frac{n+1}{3}\(rightrfloor) (cdot) (leftlfloor) (frac{n+2}{3}\这样的近似副本。在本文中,我们提供了一个匹配的上界,从而回答了他们的问题。更广义地说,对于每个三角形 T,我们都要确定在大小为 n 的点集中与 T 近似全等的三角形的最大数目。我们的证明部分基于超图图兰理论:对于平面中的每个点集和三角形 T,我们都要构造一个 3-Uniform 超图 \(\mathcal {H}=\mathcal {H}(T)\) ,其中不包含任何超图,因为它是一个全等的三角形。(\mathcal{F}=\mathcal{F}(T)\))的子图中不包含任何超图。我们对 \(\mathcal {H}\) 边缘数量的上限将决定与 T 近似全等的三角形的最大数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信