Numerical simulation and improvement of combustor structure in 3D printed sand recycling system

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED
Xiao Gao, Mao Lei, Weiwei Xu
{"title":"Numerical simulation and improvement of combustor structure in 3D printed sand recycling system","authors":"Xiao Gao, Mao Lei, Weiwei Xu","doi":"10.2478/pjct-2023-0034","DOIUrl":null,"url":null,"abstract":"In this paper, a new combustor with an output of 5 t/h is designed based on a computational particle fluid dynamics (CPFD) model. The flow field simulation is combined with the combustion simulation to analyze the internal two-phase flow, temperature field, and combustion products. The combustor structure was optimized. The simulation results show that the recovery efficiency of the waste sand and the energy utilization of the combustor can be improved under the original structure. The sand bed has a significant effect on flow field characteristics. The increase in particle temperature in the combustor increases the efficiency of waste sand recovery by increasing the height of the sand bed by 50 mm. The utilization rate of natural gas is increased and the economic efficiency is improved. The feasibility of the CPFD method can simulate the flow field characteristics inside the combustor very effectively.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"16 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2023-0034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new combustor with an output of 5 t/h is designed based on a computational particle fluid dynamics (CPFD) model. The flow field simulation is combined with the combustion simulation to analyze the internal two-phase flow, temperature field, and combustion products. The combustor structure was optimized. The simulation results show that the recovery efficiency of the waste sand and the energy utilization of the combustor can be improved under the original structure. The sand bed has a significant effect on flow field characteristics. The increase in particle temperature in the combustor increases the efficiency of waste sand recovery by increasing the height of the sand bed by 50 mm. The utilization rate of natural gas is increased and the economic efficiency is improved. The feasibility of the CPFD method can simulate the flow field characteristics inside the combustor very effectively.
3D 打印砂回收系统中燃烧器结构的数值模拟与改进
本文基于计算粒子流体动力学(CPFD)模型,设计了一种输出功率为 5 吨/小时的新型燃烧器。流场模拟与燃烧模拟相结合,分析了内部两相流、温度场和燃烧产物。对燃烧器结构进行了优化。模拟结果表明,在原有结构下,废砂的回收效率和燃烧器的能量利用率都有所提高。砂床对流场特性有显著影响。将砂床高度增加 50 毫米,燃烧器内的颗粒温度升高,可提高废砂回收效率。提高了天然气的利用率,提高了经济效益。CPFD 方法的可行性可以非常有效地模拟燃烧器内的流场特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polish Journal of Chemical Technology
Polish Journal of Chemical Technology CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.70
自引率
10.00%
发文量
22
审稿时长
4.5 months
期刊介绍: Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信