Metadynamics for Transition Paths in Irreversible Dynamics

Tobias Grafke, Alessandro Laio
{"title":"Metadynamics for Transition Paths in Irreversible Dynamics","authors":"Tobias Grafke, Alessandro Laio","doi":"10.1137/23m1563025","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 22, Issue 1, Page 125-141, March 2024. <br/> Abstract. Stochastic systems often exhibit multiple viable metastable states that are long-lived. Over very long timescales, fluctuations may push the system to transition between them, drastically changing its macroscopic configuration. In realistic systems, these transitions can happen via multiple physical mechanisms, corresponding to multiple distinct transition channels for a pair of states. In this paper, we use the fact that the transition path ensemble is equivalent to the invariant measure of a gradient flow in pathspace, which can be efficiently sampled via metadynamics. We demonstrate how this pathspace metadynamics, previously restricted to reversible molecular dynamics, is in fact very generally applicable to metastable stochastic systems, including irreversible and time-dependent ones, and allows rigorous estimation of the relative probability of competing transition paths. We showcase this approach on the study of a stochastic partial differential equation describing magnetic field reversal in the presence of advection.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m1563025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiscale Modeling &Simulation, Volume 22, Issue 1, Page 125-141, March 2024.
Abstract. Stochastic systems often exhibit multiple viable metastable states that are long-lived. Over very long timescales, fluctuations may push the system to transition between them, drastically changing its macroscopic configuration. In realistic systems, these transitions can happen via multiple physical mechanisms, corresponding to multiple distinct transition channels for a pair of states. In this paper, we use the fact that the transition path ensemble is equivalent to the invariant measure of a gradient flow in pathspace, which can be efficiently sampled via metadynamics. We demonstrate how this pathspace metadynamics, previously restricted to reversible molecular dynamics, is in fact very generally applicable to metastable stochastic systems, including irreversible and time-dependent ones, and allows rigorous estimation of the relative probability of competing transition paths. We showcase this approach on the study of a stochastic partial differential equation describing magnetic field reversal in the presence of advection.
不可逆动力学中过渡路径的元动力学
多尺度建模与仿真》,第 22 卷第 1 期,第 125-141 页,2024 年 3 月。 摘要随机系统经常表现出多种可行的长期可变状态。在很长的时间尺度上,波动可能会推动系统在这些状态之间转换,从而极大地改变其宏观构型。在现实系统中,这些转换可能通过多种物理机制发生,对应于一对状态的多个不同转换通道。在本文中,我们利用过渡路径集合等同于路径空间中梯度流的不变度量这一事实,通过元动力学对其进行有效采样。我们证明了这种以前仅限于可逆分子动力学的路径空间元动力学实际上如何非常普遍地适用于包括不可逆和时间依赖性系统在内的可陨随机系统,并能严格估计相互竞争的过渡路径的相对概率。我们在研究描述存在平流的磁场反转的随机偏微分方程时展示了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信