{"title":"Measurement model and accuracy analysis of parabolic ballistic projectile flight parameters based on random matrix","authors":"Rongli Cai","doi":"10.1007/s10665-023-10320-4","DOIUrl":null,"url":null,"abstract":"<p>The existing six light screen array measuring methodology of uniform linear trajectory is unable to determine the impact coordinate and flight speed of the terminal parabolic trajectory projectile. With the parabola trajectory in the terminal trajectory test as the objective, a method is presented to test the flight characteristics of a projectile with a variable speed parabola trajectory. By accounting for the effects of air resistance and gravity on the projectile's trajectory, the space motion equation for the projectile is determined. The impact position and flight speed of the terminal parabolic trajectory projectile cannot be determined by the current six light screen array measurement approach of uniform linear trajectory. A technique is described to evaluate the flight properties of a projectile with a variable speed parabola trajectory, with the goal being the parabola trajectory in the terminal trajectory test. The space motion equation for the projectile is calculated by taking into consideration the effects of gravity and air resistance on its trajectory. The precision of the measurement algorithm is assessed. The results show that the measurement error of the impact coordinates in the detection target plane is not larger than 3.5 mm. The developed measurement model expands the use of the six light curtain rays in the field of terminal trajectory measurement.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10320-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The existing six light screen array measuring methodology of uniform linear trajectory is unable to determine the impact coordinate and flight speed of the terminal parabolic trajectory projectile. With the parabola trajectory in the terminal trajectory test as the objective, a method is presented to test the flight characteristics of a projectile with a variable speed parabola trajectory. By accounting for the effects of air resistance and gravity on the projectile's trajectory, the space motion equation for the projectile is determined. The impact position and flight speed of the terminal parabolic trajectory projectile cannot be determined by the current six light screen array measurement approach of uniform linear trajectory. A technique is described to evaluate the flight properties of a projectile with a variable speed parabola trajectory, with the goal being the parabola trajectory in the terminal trajectory test. The space motion equation for the projectile is calculated by taking into consideration the effects of gravity and air resistance on its trajectory. The precision of the measurement algorithm is assessed. The results show that the measurement error of the impact coordinates in the detection target plane is not larger than 3.5 mm. The developed measurement model expands the use of the six light curtain rays in the field of terminal trajectory measurement.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.