Lagrangian Relations and Quantum $L_\infty$ Algebras

Branislav Jurčo, Ján Pulmann, Martin Zika
{"title":"Lagrangian Relations and Quantum $L_\\infty$ Algebras","authors":"Branislav Jurčo, Ján Pulmann, Martin Zika","doi":"arxiv-2401.06110","DOIUrl":null,"url":null,"abstract":"Quantum $L_\\infty$ algebras are higher loop generalizations of cyclic\n$L_\\infty$ algebras. Motivated by the problem of defining morphisms between\nsuch algebras, we construct a linear category of $(-1)$-shifted symplectic\nvector spaces and distributional half-densities, originally proposed by\n\\v{S}evera. Morphisms in this category can be given both by formal\nhalf-densities and Lagrangian relations; we prove that the composition of such\nmorphisms recovers the construction of homotopy transfer of quantum $L_\\infty$\nalgebras. Finally, using this category, we propose a new notion of a relation\nbetween quantum $L_\\infty$ algebras.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.06110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum $L_\infty$ algebras are higher loop generalizations of cyclic $L_\infty$ algebras. Motivated by the problem of defining morphisms between such algebras, we construct a linear category of $(-1)$-shifted symplectic vector spaces and distributional half-densities, originally proposed by \v{S}evera. Morphisms in this category can be given both by formal half-densities and Lagrangian relations; we prove that the composition of such morphisms recovers the construction of homotopy transfer of quantum $L_\infty$ algebras. Finally, using this category, we propose a new notion of a relation between quantum $L_\infty$ algebras.
拉格朗日关系与量子 $L_\infty$ 算法
量子$L_\infty$代数是循环$L_\infty$代数的高环广义。受定义这些代数之间的态的问题的启发,我们构建了一个$(-1)$移位交映向量空间和分布半密度的线性范畴,这个范畴最初是由\v{S}evera提出的。这个范畴中的变形既可以由形式半密度给出,也可以由拉格朗日关系给出;我们证明了这种变形的组合恢复了量子 $L_infty$ 对象的同调转移的构造。最后,利用这个范畴,我们提出了量子 $L_infty$ 对象之间关系的新概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信