A strong and fast millimeter-sized soft pneumatic actuator based on alternative pole water electrolysis

IF 2.1 Q3 ROBOTICS
Hadi Kolivand, Azita Souri, Arash Ahmadi
{"title":"A strong and fast millimeter-sized soft pneumatic actuator based on alternative pole water electrolysis","authors":"Hadi Kolivand, Azita Souri, Arash Ahmadi","doi":"10.1007/s41315-023-00307-w","DOIUrl":null,"url":null,"abstract":"<p>A new soft pneumatic microactuator based on alternative pole water electrolysis has recently been proposed. In these actuators, a water-based electrolyte is electrolyzed under an alternative current, generating hydrogen/oxygen nanobubbles/microbubbles. These bubbles cause the expansion of the electrolyte, resulting in the displacement of the actuator membrane. These actuators stand out for their lightweight design, cost-effectiveness, high performance, and versatility for various applications. In this paper, a strong and fast millimeter-sized actuator based on alternative pole water electrolysis is proposed. The proposed actuator, electronic driver circuits, and measurement systems is implemented, and some experiments to investigate the actuator’s performance under different conditions, including input variables such as voltage, time, temperature, and mass load are conducted. Our experimental results and comparisons with other actuators demonstrate that the proposed actuator exhibits favorable properties in terms of response time, output mechanical force, reliability, scalability, and simplicity of manufacturing. The versatility of this actuator makes it suitable for a wide range of soft robotics applications, including limb movement and manipulation. Additionally, it has potential medical applications such as microrobotics for navigation in narrow body channels for diagnosis, sampling, drug delivery, and surgery.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-023-00307-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A new soft pneumatic microactuator based on alternative pole water electrolysis has recently been proposed. In these actuators, a water-based electrolyte is electrolyzed under an alternative current, generating hydrogen/oxygen nanobubbles/microbubbles. These bubbles cause the expansion of the electrolyte, resulting in the displacement of the actuator membrane. These actuators stand out for their lightweight design, cost-effectiveness, high performance, and versatility for various applications. In this paper, a strong and fast millimeter-sized actuator based on alternative pole water electrolysis is proposed. The proposed actuator, electronic driver circuits, and measurement systems is implemented, and some experiments to investigate the actuator’s performance under different conditions, including input variables such as voltage, time, temperature, and mass load are conducted. Our experimental results and comparisons with other actuators demonstrate that the proposed actuator exhibits favorable properties in terms of response time, output mechanical force, reliability, scalability, and simplicity of manufacturing. The versatility of this actuator makes it suitable for a wide range of soft robotics applications, including limb movement and manipulation. Additionally, it has potential medical applications such as microrobotics for navigation in narrow body channels for diagnosis, sampling, drug delivery, and surgery.

Graphical abstract

Abstract Image

基于替代极电解水技术的强大而快速的毫米级软气动执行器
最近有人提出了一种基于替代极水电解的新型软气动微执行器。在这些致动器中,水基电解质在替代电流下进行电解,产生氢/氧纳米气泡/微气泡。这些气泡使电解质膨胀,导致致动器膜移位。这些致动器因设计轻巧、成本效益高、性能优越和适用于各种应用而脱颖而出。本文提出了一种基于替代极水电解的强大而快速的毫米级致动器。本文实现了所提出的致动器、电子驱动电路和测量系统,并进行了一些实验来研究致动器在不同条件下的性能,包括电压、时间、温度和质量负载等输入变量。我们的实验结果以及与其他致动器的比较表明,所提出的致动器在响应时间、输出机械力、可靠性、可扩展性和制造简易性方面都表现出良好的性能。这种致动器的多功能性使其适用于广泛的软机器人应用,包括肢体运动和操纵。此外,它还具有潜在的医疗应用价值,例如用于在狭窄体腔内导航的微型机器人,以进行诊断、采样、给药和手术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.90%
发文量
50
期刊介绍: The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信