{"title":"On the p-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity","authors":"Min Zhao, Yueqiang Song, D. D. Repovš","doi":"10.1515/dema-2023-0124","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we deal with the following p p -fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity: M ( [ u ] s , A p ) ( − Δ ) p , A s u + V ( x ) ∣ u ∣ p − 2 u = λ ∫ R N ∣ u ∣ p μ , s * ∣ x − y ∣ μ d y ∣ u ∣ p μ , s * − 2 u + k ∣ u ∣ q − 2 u , x ∈ R N , M({\\left[u]}_{s,A}^{p}){\\left(-\\Delta )}_{p,A}^{s}u+V\\left(x){| u| }^{p-2}u=\\lambda \\left(\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{N}}\\frac{{| u| }^{{p}_{\\mu ,s}^{* }}}{{| x-y| }^{\\mu }}{\\rm{d}}y\\right){| u| }^{{p}_{\\mu ,s}^{* }-2}u+k{| u| }^{q-2}u,\\hspace{1em}x\\in {{\\mathbb{R}}}^{N}, where 0 < s < 1 < p 0\\lt s\\lt 1\\lt p , p s < N ps\\lt N , p < q < 2 p s , μ * p\\lt q\\lt 2{p}_{s,\\mu }^{* } , 0 < μ < N 0\\lt \\mu \\lt N , λ \\lambda , and k k are some positive parameters, p s , μ * = p N − p μ 2 N − p s {p}_{s,\\mu }^{* }=\\frac{pN-p\\frac{\\mu }{2}}{N-ps} is the critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and functions V V and M M satisfy the suitable conditions. By proving the compactness results using the fractional version of concentration compactness principle, we establish the existence of nontrivial solutions to this problem.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2023-0124","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we deal with the following p p -fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity: M ( [ u ] s , A p ) ( − Δ ) p , A s u + V ( x ) ∣ u ∣ p − 2 u = λ ∫ R N ∣ u ∣ p μ , s * ∣ x − y ∣ μ d y ∣ u ∣ p μ , s * − 2 u + k ∣ u ∣ q − 2 u , x ∈ R N , M({\left[u]}_{s,A}^{p}){\left(-\Delta )}_{p,A}^{s}u+V\left(x){| u| }^{p-2}u=\lambda \left(\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}\frac{{| u| }^{{p}_{\mu ,s}^{* }}}{{| x-y| }^{\mu }}{\rm{d}}y\right){| u| }^{{p}_{\mu ,s}^{* }-2}u+k{| u| }^{q-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{N}, where 0 < s < 1 < p 0\lt s\lt 1\lt p , p s < N ps\lt N , p < q < 2 p s , μ * p\lt q\lt 2{p}_{s,\mu }^{* } , 0 < μ < N 0\lt \mu \lt N , λ \lambda , and k k are some positive parameters, p s , μ * = p N − p μ 2 N − p s {p}_{s,\mu }^{* }=\frac{pN-p\frac{\mu }{2}}{N-ps} is the critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and functions V V and M M satisfy the suitable conditions. By proving the compactness results using the fractional version of concentration compactness principle, we establish the existence of nontrivial solutions to this problem.
摘要 本文处理了以下带有电磁场和 Hardy-Littlewood-Sobolev 非线性的 p p 分薛定谔-基尔霍夫方程:M ( [ u ] s , A p ) ( - Δ ) p , A s u + V ( x ) ∣ u ∣ p - 2 u = λ ∫ R N ∣ u ∣ p μ 、s * ∣ x - y ∣ μ d y ∣ u ∣ p μ , s * - 2 u + k ∣ u ∣ q - 2 u , x∈ R N , M({\left[u]}_{s,A}^{p}){\left(-\Delta )}_{p、A}^{s}u+V\left(x){| u| }^{p-2}u=\lambda \left(\mathop{int }\limits_{{\mathbb{R}}}^{N}}\frac{{| u| }^{p}_{\mu ,s}^{* }}{{x-y| }^{\mu }}{rm{d}}y\right){| u| }^{p}_{\mu 、s}^{* }-2}u+k{| u| }^{q-2}u,hspace{1em}x\in {{mathbb{R}}}^{N}, where 0 < s < 1 < p 0\lt s\lt 1\lt p , p s < N ps\lt N , p < q < 2 p s , μ * p\lt q\lt 2{p}_{s,\mu }^{* }.0 < μ < N 0\lt \mu \lt N , λ \lambda , 和 k k 是一些正参数,p s , μ * = p N - p μ 2 N - p s {p}_{s,\mu }^{* }=\frac{pN-p\frac\{mu }{2}}{N-ps} 是关于哈代-利特尔伍德-索博列夫不等式的临界指数,函数 V V 和 M M 满足合适的条件。通过利用分数版的集中紧凑性原理证明紧凑性结果,我们确定了此问题的非小解的存在性。
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.