On the p-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity

IF 2 3区 数学 Q1 MATHEMATICS
Min Zhao, Yueqiang Song, D. D. Repovš
{"title":"On the p-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity","authors":"Min Zhao, Yueqiang Song, D. D. Repovš","doi":"10.1515/dema-2023-0124","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we deal with the following p p -fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity: M ( [ u ] s , A p ) ( − Δ ) p , A s u + V ( x ) ∣ u ∣ p − 2 u = λ ∫ R N ∣ u ∣ p μ , s * ∣ x − y ∣ μ d y ∣ u ∣ p μ , s * − 2 u + k ∣ u ∣ q − 2 u , x ∈ R N , M({\\left[u]}_{s,A}^{p}){\\left(-\\Delta )}_{p,A}^{s}u+V\\left(x){| u| }^{p-2}u=\\lambda \\left(\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{N}}\\frac{{| u| }^{{p}_{\\mu ,s}^{* }}}{{| x-y| }^{\\mu }}{\\rm{d}}y\\right){| u| }^{{p}_{\\mu ,s}^{* }-2}u+k{| u| }^{q-2}u,\\hspace{1em}x\\in {{\\mathbb{R}}}^{N}, where 0 < s < 1 < p 0\\lt s\\lt 1\\lt p , p s < N ps\\lt N , p < q < 2 p s , μ * p\\lt q\\lt 2{p}_{s,\\mu }^{* } , 0 < μ < N 0\\lt \\mu \\lt N , λ \\lambda , and k k are some positive parameters, p s , μ * = p N − p μ 2 N − p s {p}_{s,\\mu }^{* }=\\frac{pN-p\\frac{\\mu }{2}}{N-ps} is the critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and functions V V and M M satisfy the suitable conditions. By proving the compactness results using the fractional version of concentration compactness principle, we establish the existence of nontrivial solutions to this problem.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2023-0124","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we deal with the following p p -fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity: M ( [ u ] s , A p ) ( − Δ ) p , A s u + V ( x ) ∣ u ∣ p − 2 u = λ ∫ R N ∣ u ∣ p μ , s * ∣ x − y ∣ μ d y ∣ u ∣ p μ , s * − 2 u + k ∣ u ∣ q − 2 u , x ∈ R N , M({\left[u]}_{s,A}^{p}){\left(-\Delta )}_{p,A}^{s}u+V\left(x){| u| }^{p-2}u=\lambda \left(\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}\frac{{| u| }^{{p}_{\mu ,s}^{* }}}{{| x-y| }^{\mu }}{\rm{d}}y\right){| u| }^{{p}_{\mu ,s}^{* }-2}u+k{| u| }^{q-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{N}, where 0 < s < 1 < p 0\lt s\lt 1\lt p , p s < N ps\lt N , p < q < 2 p s , μ * p\lt q\lt 2{p}_{s,\mu }^{* } , 0 < μ < N 0\lt \mu \lt N , λ \lambda , and k k are some positive parameters, p s , μ * = p N − p μ 2 N − p s {p}_{s,\mu }^{* }=\frac{pN-p\frac{\mu }{2}}{N-ps} is the critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and functions V V and M M satisfy the suitable conditions. By proving the compactness results using the fractional version of concentration compactness principle, we establish the existence of nontrivial solutions to this problem.
关于有电磁场的 p 分数薛定谔-基尔霍夫方程和哈代-利特尔伍德-索博廖夫非线性
摘要 本文处理了以下带有电磁场和 Hardy-Littlewood-Sobolev 非线性的 p p 分薛定谔-基尔霍夫方程:M ( [ u ] s , A p ) ( - Δ ) p , A s u + V ( x ) ∣ u ∣ p - 2 u = λ ∫ R N ∣ u ∣ p μ 、s * ∣ x - y ∣ μ d y ∣ u ∣ p μ , s * - 2 u + k ∣ u ∣ q - 2 u , x∈ R N , M({\left[u]}_{s,A}^{p}){\left(-\Delta )}_{p、A}^{s}u+V\left(x){| u| }^{p-2}u=\lambda \left(\mathop{int }\limits_{{\mathbb{R}}}^{N}}\frac{{| u| }^{p}_{\mu ,s}^{* }}{{x-y| }^{\mu }}{rm{d}}y\right){| u| }^{p}_{\mu 、s}^{* }-2}u+k{| u| }^{q-2}u,hspace{1em}x\in {{mathbb{R}}}^{N}, where 0 < s < 1 < p 0\lt s\lt 1\lt p , p s < N ps\lt N , p < q < 2 p s , μ * p\lt q\lt 2{p}_{s,\mu }^{* }.0 < μ < N 0\lt \mu \lt N , λ \lambda , 和 k k 是一些正参数,p s , μ * = p N - p μ 2 N - p s {p}_{s,\mu }^{* }=\frac{pN-p\frac\{mu }{2}}{N-ps} 是关于哈代-利特尔伍德-索博列夫不等式的临界指数,函数 V V 和 M M 满足合适的条件。通过利用分数版的集中紧凑性原理证明紧凑性结果,我们确定了此问题的非小解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信