E. Torres-Moreno, V. Moreno-Oliva, M. Campos-García, J. R. Dorrego-Portela, Orlando Lastres-Danguillecourt, N. Farrera-Vázquez
{"title":"Use of an optical profilometer to measure the aerodynamic shape and the twist of a wind turbine blade","authors":"E. Torres-Moreno, V. Moreno-Oliva, M. Campos-García, J. R. Dorrego-Portela, Orlando Lastres-Danguillecourt, N. Farrera-Vázquez","doi":"10.1063/5.0176454","DOIUrl":null,"url":null,"abstract":"This study introduces a metrological approach to measure the aerodynamic shape and the twist of a wind turbine blade. The optical profilometer measurement technique used is laser triangulation. A camera records the image of a line projected onto a section of the blade and, by reconstructing the airfoil shape, the twist angular position of the profile with respect to the axial line of the blade is determined. This methodology is applied to test different sections of a Wortmann FX 63-137 airfoil with a length of 1700 mm. The results of the aerodynamic shape and twist angle are quantitatively verified by comparing them with the ideal or design values. The reconstruction process achieved a resolution of 0.06 mm, and measurement errors in the twist angular position were less than 0.1°. The presented method is efficient, accurate, and low cost to evaluate the blade profiles of low-power wind turbines. However, due to its easy implementation, it is expected to be able to measure any full-scale wind blade profile up to several meters in length.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0176454","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a metrological approach to measure the aerodynamic shape and the twist of a wind turbine blade. The optical profilometer measurement technique used is laser triangulation. A camera records the image of a line projected onto a section of the blade and, by reconstructing the airfoil shape, the twist angular position of the profile with respect to the axial line of the blade is determined. This methodology is applied to test different sections of a Wortmann FX 63-137 airfoil with a length of 1700 mm. The results of the aerodynamic shape and twist angle are quantitatively verified by comparing them with the ideal or design values. The reconstruction process achieved a resolution of 0.06 mm, and measurement errors in the twist angular position were less than 0.1°. The presented method is efficient, accurate, and low cost to evaluate the blade profiles of low-power wind turbines. However, due to its easy implementation, it is expected to be able to measure any full-scale wind blade profile up to several meters in length.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy