{"title":"Structural optimization of laminated leaf-like piezoelectric wind energy harvesters based on topological method","authors":"Mingming Wang, Weiyuan Wang, Qiuhong Li","doi":"10.1177/16878132231224577","DOIUrl":null,"url":null,"abstract":"In this paper, a series of leaf-like piezoelectric elements are proposed by using laminated structure of polypropylene (PP) and Polyvinylidene fluoride (PVDF) film to collect wind energy through vortex induced vibration. Topology optimization based on solid isotropic material with penalization method is employed in seeking optimal configurations of the elements. The PP and PVDF layer were set as optimization variables respectively to obtain topological layouts that would be equivalent to maximizes the overall strain energy as the objective function. Four simple shapes of piezoelectric elements with different topological configurations are manufactured and tested in wind tunnel to estimate the energy harvesting capabilities. The experimental results show that the reinforcement optimized long trapezoid model has the highest open-circuit output voltage of 4.01 V and output power of 6.125 μW at the wind speed of 12 m/s. For the optimization of piezoelectric materials, the short trapezoid model can reach the open circuit output voltage of 2.061 V and output power of 1.158 μW. It indicated that the topology optimization can indeed improve the energy harvesting efficiency of the piezoelectric element. However, this method is not universal at present, which means that the external shape of the model will influence the performance of the relevant optimization results.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"21 9","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231224577","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a series of leaf-like piezoelectric elements are proposed by using laminated structure of polypropylene (PP) and Polyvinylidene fluoride (PVDF) film to collect wind energy through vortex induced vibration. Topology optimization based on solid isotropic material with penalization method is employed in seeking optimal configurations of the elements. The PP and PVDF layer were set as optimization variables respectively to obtain topological layouts that would be equivalent to maximizes the overall strain energy as the objective function. Four simple shapes of piezoelectric elements with different topological configurations are manufactured and tested in wind tunnel to estimate the energy harvesting capabilities. The experimental results show that the reinforcement optimized long trapezoid model has the highest open-circuit output voltage of 4.01 V and output power of 6.125 μW at the wind speed of 12 m/s. For the optimization of piezoelectric materials, the short trapezoid model can reach the open circuit output voltage of 2.061 V and output power of 1.158 μW. It indicated that the topology optimization can indeed improve the energy harvesting efficiency of the piezoelectric element. However, this method is not universal at present, which means that the external shape of the model will influence the performance of the relevant optimization results.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering