The minimum exponential atom-bond connectivity energy of trees

IF 0.8 Q2 MATHEMATICS
Wei Gao
{"title":"The minimum exponential atom-bond connectivity energy of trees","authors":"Wei Gao","doi":"10.1515/spma-2023-0108","DOIUrl":null,"url":null,"abstract":"Abstract Let G = ( V ( G ) , E ( G ) ) G=\\left(V\\left(G),E\\left(G)) be a graph of order n n . The exponential atom-bond connectivity matrix A e ABC ( G ) {A}_{{e}^{{\\rm{ABC}}}}\\left(G) of G G is an n × n n\\times n matrix whose ( i , j ) \\left(i,j) -entry is equal to e d ( v i ) + d ( v j ) − 2 d ( v i ) d ( v j ) {e}^{\\sqrt{\\tfrac{d\\left({v}_{i})+d\\left({v}_{j})-2}{d\\left({v}_{i})d\\left({v}_{j})}}} if v i v j ∈ E ( G ) {v}_{i}{v}_{j}\\in E\\left(G) , and 0 otherwise. The exponential atom-bond connectivity energy of G G is the sum of the absolute values of all eigenvalues of the matrix A e ABC ( G ) {A}_{{e}^{{\\rm{ABC}}}}\\left(G) . It is proved that among all trees of order n n , the star S n {S}_{n} is the unique tree with the minimum exponential atom-bond connectivity energy.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"31 7","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2023-0108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let G = ( V ( G ) , E ( G ) ) G=\left(V\left(G),E\left(G)) be a graph of order n n . The exponential atom-bond connectivity matrix A e ABC ( G ) {A}_{{e}^{{\rm{ABC}}}}\left(G) of G G is an n × n n\times n matrix whose ( i , j ) \left(i,j) -entry is equal to e d ( v i ) + d ( v j ) − 2 d ( v i ) d ( v j ) {e}^{\sqrt{\tfrac{d\left({v}_{i})+d\left({v}_{j})-2}{d\left({v}_{i})d\left({v}_{j})}}} if v i v j ∈ E ( G ) {v}_{i}{v}_{j}\in E\left(G) , and 0 otherwise. The exponential atom-bond connectivity energy of G G is the sum of the absolute values of all eigenvalues of the matrix A e ABC ( G ) {A}_{{e}^{{\rm{ABC}}}}\left(G) . It is proved that among all trees of order n n , the star S n {S}_{n} is the unique tree with the minimum exponential atom-bond connectivity energy.
树的最小指数原子键连接能
摘要 让 G = ( V ( G ) , E ( G ) )G=left(V\left(G),E\left(G)) 是一个阶数为 n n 的图。G G 的指数原子键连通性矩阵 A e ABC ( G ) {A}_{{e}^{{rm\{ABC}}}}\left(G) 是一个 n × n 次 n 矩阵,其 ( i , j ) \left(i. i. j) - 条目等于 n × n 次 n 矩阵、j) -项等于 e d ( v i ) + d ( v j ) - 2 d ( v i ) d ( v j ) {e}^{sqrt{tfrac{d\left({v}_{i})+d\left({v}_{j})-2}{d\left({v}_{i})d\left({v}_{j})}}} 如果 v i v j ∈ E ( G ) {v}_{i}{v}_{j}\in E\left(G) 、否则为 0。G G 的指数原子键连通能是矩阵 A e ABC ( G ) {A}_{{e}^{rm{ABC}}}}\left(G) 的所有特征值的绝对值之和。实验证明,在所有阶数为 n n 的树中,星 S n {S}_{n} 是唯一具有最小指数原子键连接能的树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信