{"title":"Design Methodology for Robust, Distributed Time-Sensitive Applications","authors":"Aviral Shrivastava, M. Khayatian, Bob Iannucci","doi":"10.1109/IOTM.001.2300048","DOIUrl":null,"url":null,"abstract":"Time has become an essential aspect of many computing systems where temporal correctness is as important as functional correctness. Autonomous vehicles, Industry 4.0, and smart grids are a few examples of time-sensitive systems. As time-sensitive applications become large, complex, and distributed, traditional methods fall short of achieving the desired orchestration among components. In this vision article, we first propose a standard to maintain an accurate notion of time among all components of the system, i.e., sensors, computing platforms, and actuators. Then, we propose explicit-time state estimation and closed-loop control algorithms that can tolerate large delays while achieving reasonable performance, and an integrated fail-safe mechanism that achieves a high level of robustness when timing failures happen.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"52 12","pages":"104-110"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2300048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Time has become an essential aspect of many computing systems where temporal correctness is as important as functional correctness. Autonomous vehicles, Industry 4.0, and smart grids are a few examples of time-sensitive systems. As time-sensitive applications become large, complex, and distributed, traditional methods fall short of achieving the desired orchestration among components. In this vision article, we first propose a standard to maintain an accurate notion of time among all components of the system, i.e., sensors, computing platforms, and actuators. Then, we propose explicit-time state estimation and closed-loop control algorithms that can tolerate large delays while achieving reasonable performance, and an integrated fail-safe mechanism that achieves a high level of robustness when timing failures happen.