PENERAPAN METODE NAÏVE BAYES DALAM KLASIFIKASI KESEGARAN IKAN BERDASARKAN WARNA PADA CITRA AREA MATA

Mutmainnah Muchtar, Yuwanda Purnamasari Pasrun, Rasmiati Rasyid, Nisa Miftachurohmah, Mardiawati Mardiawati
{"title":"PENERAPAN METODE NAÏVE BAYES DALAM KLASIFIKASI KESEGARAN IKAN BERDASARKAN WARNA PADA CITRA AREA MATA","authors":"Mutmainnah Muchtar, Yuwanda Purnamasari Pasrun, Rasmiati Rasyid, Nisa Miftachurohmah, Mardiawati Mardiawati","doi":"10.23960/jitet.v12i1.3879","DOIUrl":null,"url":null,"abstract":"As a maritime nation, fish is a staple in the Indonesian diet, rich in nutrition and a crucial protein source. It is imperative to maintain the freshness of fish to ensure the quality of fish production. However, the practice of mixing fresh and non-fresh fish poses a serious threat to consumer health and diminishes the overall quality of fish production. Therefore, the development of an automated and efficient method is necessary to distinguish between fresh and non-fresh fish. This research proposes the application of the Naïve Bayes method in classifying fish freshness based on color analysis in the eye area image. This approach involves the extraction of entropy features after segmenting fish images using the RGB and YCbCr color models. A total of 40 datasets of fish eye images were used for training and testing the model. The research results indicate that the proposed classification method achieved an accuracy rate of 97.5%. This success signifies the potential of the color analysis method and entropy features in distinguishing levels of fish freshness. These findings contribute to the development of automated techniques for monitoring and processing fish quality in the fisheries industry.","PeriodicalId":313205,"journal":{"name":"Jurnal Informatika dan Teknik Elektro Terapan","volume":"131 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika dan Teknik Elektro Terapan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23960/jitet.v12i1.3879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a maritime nation, fish is a staple in the Indonesian diet, rich in nutrition and a crucial protein source. It is imperative to maintain the freshness of fish to ensure the quality of fish production. However, the practice of mixing fresh and non-fresh fish poses a serious threat to consumer health and diminishes the overall quality of fish production. Therefore, the development of an automated and efficient method is necessary to distinguish between fresh and non-fresh fish. This research proposes the application of the Naïve Bayes method in classifying fish freshness based on color analysis in the eye area image. This approach involves the extraction of entropy features after segmenting fish images using the RGB and YCbCr color models. A total of 40 datasets of fish eye images were used for training and testing the model. The research results indicate that the proposed classification method achieved an accuracy rate of 97.5%. This success signifies the potential of the color analysis method and entropy features in distinguishing levels of fish freshness. These findings contribute to the development of automated techniques for monitoring and processing fish quality in the fisheries industry.
基于眼区图像颜色的天真贝叶斯方法在鱼类新鲜度分类中的应用
作为一个海洋国家,鱼是印度尼西亚人的主食,营养丰富,是重要的蛋白质来源。必须保持鱼的新鲜度,以确保鱼类生产的质量。然而,将新鲜和不新鲜的鱼混在一起的做法严重威胁着消费者的健康,并降低了鱼类生产的整体质量。因此,有必要开发一种自动、高效的方法来区分新鲜和不新鲜的鱼。本研究提出应用奈维贝叶斯方法,根据眼区图像的颜色分析对鱼类新鲜度进行分类。该方法包括在使用 RGB 和 YCbCr 色彩模型分割鱼类图像后提取熵特征。该模型共使用了 40 个鱼眼图像数据集进行训练和测试。研究结果表明,所提出的分类方法的准确率达到了 97.5%。这一成功标志着色彩分析方法和熵特征在区分鱼类新鲜程度方面的潜力。这些研究结果有助于开发渔业中监测和处理鱼类质量的自动化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信