Advanced Cybercrime Detection: A Comprehensive Study on Supervised and Unsupervised Machine Learning Approaches Using Real-world Datasets

Duc M Cao, Md Abu Sayed, Md Tuhin Mia, Eftekhar Hossain Ayon, Bishnu Padh Ghosh, Rejon Kumar Ray, Aqib Raihan, Aslima Akter, Mamunur Rahman
{"title":"Advanced Cybercrime Detection: A Comprehensive Study on Supervised and Unsupervised Machine Learning Approaches Using Real-world Datasets","authors":"Duc M Cao, Md Abu Sayed, Md Tuhin Mia, Eftekhar Hossain Ayon, Bishnu Padh Ghosh, Rejon Kumar Ray, Aqib Raihan, Aslima Akter, Mamunur Rahman","doi":"10.32996/jcsts.2024.6.1.5","DOIUrl":null,"url":null,"abstract":"In the ever-evolving field of cybersecurity, sophisticated methods—which combine supervised and unsupervised approaches—are used to tackle cybercrime. Strong supervised tools include Support Vector Machines (SVM) and K-Nearest Neighbors (KNN), while well-known unsupervised methods include the K-means clustering model. These techniques are used on the publicly available StatLine dataset from CBS, which is a large dataset that includes the individual attributes of one thousand crime victims. Performance analysis shows the remarkable 91% accuracy of SVM in supervised classification by examining the differences between training and testing data. K-Nearest Neighbors (KNN) models are quite good in the unsupervised arena; their accuracy in detecting criminal activity is impressive, at 79.56%. Strong assessment metrics, such as False Positive (FP), True Negative (TN), False Negative (FN), False Positive (TP), and False Alarm Rate (FAR), Detection Rate (DR), Accuracy (ACC), Recall, Precision, Specificity, Sensitivity, and Fowlkes–Mallow's scores, provide a comprehensive assessment.","PeriodicalId":417206,"journal":{"name":"Journal of Computer Science and Technology Studies","volume":"140 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32996/jcsts.2024.6.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the ever-evolving field of cybersecurity, sophisticated methods—which combine supervised and unsupervised approaches—are used to tackle cybercrime. Strong supervised tools include Support Vector Machines (SVM) and K-Nearest Neighbors (KNN), while well-known unsupervised methods include the K-means clustering model. These techniques are used on the publicly available StatLine dataset from CBS, which is a large dataset that includes the individual attributes of one thousand crime victims. Performance analysis shows the remarkable 91% accuracy of SVM in supervised classification by examining the differences between training and testing data. K-Nearest Neighbors (KNN) models are quite good in the unsupervised arena; their accuracy in detecting criminal activity is impressive, at 79.56%. Strong assessment metrics, such as False Positive (FP), True Negative (TN), False Negative (FN), False Positive (TP), and False Alarm Rate (FAR), Detection Rate (DR), Accuracy (ACC), Recall, Precision, Specificity, Sensitivity, and Fowlkes–Mallow's scores, provide a comprehensive assessment.
高级网络犯罪检测:利用真实世界数据集全面研究监督和非监督机器学习方法
在不断发展的网络安全领域,人们使用复杂的方法来应对网络犯罪,这些方法结合了监督和非监督方法。强大的监督工具包括支持向量机(SVM)和 K-Nearest Neighbors(KNN),而著名的非监督方法包括 K-means 聚类模型。这些技术被用于 CBS 公开提供的 StatLine 数据集,这是一个包含一千名犯罪受害者个人属性的大型数据集。性能分析表明,通过检查训练数据和测试数据之间的差异,SVM 在监督分类中的准确率高达 91%。K-Nearest Neighbors (KNN) 模型在无监督领域表现出色;其检测犯罪活动的准确率高达 79.56%,令人印象深刻。假阳性 (FP)、真阴性 (TN)、假阴性 (FN)、假阳性 (TP)、误报率 (FAR)、检测率 (DR)、准确率 (ACC)、召回率 (Recall)、精确度 (Precision)、特异性 (Specificity)、灵敏度 (Sensitivity) 和 Fowlkes-Mallow 分数等强大的评估指标提供了全面的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信