Quantile Regression in Survival Analysis: Comparing Check-Based Modeling and the Minimum Distance Approach

Q4 Medicine
Fereshteh Mokhtarpour, Mostafa Hosseini, Akram Yazdani, Mehdi Yaseri
{"title":"Quantile Regression in Survival Analysis: Comparing Check-Based Modeling and the Minimum Distance Approach","authors":"Fereshteh Mokhtarpour, Mostafa Hosseini, Akram Yazdani, Mehdi Yaseri","doi":"10.18502/jbe.v9i2.14629","DOIUrl":null,"url":null,"abstract":"Introduction: Quantile regression is a valuable alternative for survival data analysis, enabling flexible evaluations of covariate effects on survival outcomes with intuitive interpretations. It offers practical computation and reliability. However, challenges arise when applying quantile regression to censored data, particularly for upper quantiles. The minimum distance approach, utilizing dual-kernel estimation and the inverse cumulative distribution function, shows promise in addressing these challenges, especially with higher-dimensional covariates. \nMethods: This study contrasts two methods within the realm of quantile linear regression for survival analysis: check-based modeling and the minimum distance approach. Effectiveness is assessed across various scenarios through comprehensive simulation. \nResults: The simulation results showed that using the quantile regression model with the minimum distance approach reduces the percentage of root mean square error in parameter estimation compared to the quantile regression models based on the check loss function. Additionally, a larger sample size and reduced censoring percentage led to decreased root mean square error in parameter estimation. \nConclusion: The research highlights the benefits of using the minimum distance approach for quantile regression. It reduces errors, improves model predictions, captures patterns, and optimizes parameters even with complete data. However, this approach has limitations. The accuracy of estimated quantiles can be influenced by the choice of distance metric and weighting scheme. The assumption of independence between censoring mechanism and survival time may not hold in real-world scenarios. Additionally, dealing with large datasets can be computationally complex. \n  \n ","PeriodicalId":34310,"journal":{"name":"Journal of Biostatistics and Epidemiology","volume":"137 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jbe.v9i2.14629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Quantile regression is a valuable alternative for survival data analysis, enabling flexible evaluations of covariate effects on survival outcomes with intuitive interpretations. It offers practical computation and reliability. However, challenges arise when applying quantile regression to censored data, particularly for upper quantiles. The minimum distance approach, utilizing dual-kernel estimation and the inverse cumulative distribution function, shows promise in addressing these challenges, especially with higher-dimensional covariates. Methods: This study contrasts two methods within the realm of quantile linear regression for survival analysis: check-based modeling and the minimum distance approach. Effectiveness is assessed across various scenarios through comprehensive simulation. Results: The simulation results showed that using the quantile regression model with the minimum distance approach reduces the percentage of root mean square error in parameter estimation compared to the quantile regression models based on the check loss function. Additionally, a larger sample size and reduced censoring percentage led to decreased root mean square error in parameter estimation. Conclusion: The research highlights the benefits of using the minimum distance approach for quantile regression. It reduces errors, improves model predictions, captures patterns, and optimizes parameters even with complete data. However, this approach has limitations. The accuracy of estimated quantiles can be influenced by the choice of distance metric and weighting scheme. The assumption of independence between censoring mechanism and survival time may not hold in real-world scenarios. Additionally, dealing with large datasets can be computationally complex.    
生存分析中的定量回归:基于检验的建模与最小距离法的比较
简介量子回归是生存数据分析的一个重要选择,它可以灵活评估协变量对生存结果的影响,并给出直观的解释。它提供了实用的计算方法和可靠性。然而,将量值回归应用于有删减数据时,尤其是上量值数据时,会遇到一些挑战。利用双核估计和逆累积分布函数的最小距离方法有望解决这些难题,尤其是在使用高维协变量时。方法:本研究对比了生存分析量化线性回归领域的两种方法:基于检验的建模和最小距离方法。通过综合模拟评估了在各种情况下的有效性。结果模拟结果表明,与基于检验损失函数的量化回归模型相比,使用最小距离法的量化回归模型可减少参数估计的均方根误差百分比。此外,更大的样本量和更低的删减百分比也导致参数估计的均方根误差减小。结论这项研究强调了使用最小距离方法进行量化回归的好处。它可以减少误差、改进模型预测、捕捉模式并优化参数,即使在数据完整的情况下也是如此。不过,这种方法也有局限性。距离度量和加权方案的选择会影响估计量位数的准确性。在现实世界中,删减机制和存活时间之间的独立性假设可能不成立。此外,处理大型数据集在计算上也很复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
26
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信