Impact of Lossy Compression Errors on Passive Seismic Data Analyses

Abdul Hafiz S. Issah, Eileen R. Martin
{"title":"Impact of Lossy Compression Errors on Passive Seismic Data Analyses","authors":"Abdul Hafiz S. Issah, Eileen R. Martin","doi":"10.1785/0220230314","DOIUrl":null,"url":null,"abstract":"\n New technologies such as low-cost nodes and distributed acoustic sensing (DAS) are making it easier to continuously collect broadband, high-density seismic monitoring data. To reduce the time to move data from the field to computing centers, reduce archival requirements, and speed up interactive data analysis and visualization, we are motivated to investigate the use of lossy compression on passive seismic array data. In particular, there is a need to not only just quantify the errors in the raw data but also the characteristics of the spectra of these errors and the extent to which these errors propagate into results such as detectability and arrival-time picks of microseismic events. We compare three types of lossy compression: sparse thresholded wavelet compression, zfp compression, and low-rank singular value decomposition compression. We apply these techniques to compare compression schemes on two publicly available datasets: an urban dark fiber DAS experiment and a surface DAS array above a geothermal field. We find that depending on the level of compression needed and the importance of preserving large versus small seismic events, different compression schemes are preferable.","PeriodicalId":508466,"journal":{"name":"Seismological Research Letters","volume":"142 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New technologies such as low-cost nodes and distributed acoustic sensing (DAS) are making it easier to continuously collect broadband, high-density seismic monitoring data. To reduce the time to move data from the field to computing centers, reduce archival requirements, and speed up interactive data analysis and visualization, we are motivated to investigate the use of lossy compression on passive seismic array data. In particular, there is a need to not only just quantify the errors in the raw data but also the characteristics of the spectra of these errors and the extent to which these errors propagate into results such as detectability and arrival-time picks of microseismic events. We compare three types of lossy compression: sparse thresholded wavelet compression, zfp compression, and low-rank singular value decomposition compression. We apply these techniques to compare compression schemes on two publicly available datasets: an urban dark fiber DAS experiment and a surface DAS array above a geothermal field. We find that depending on the level of compression needed and the importance of preserving large versus small seismic events, different compression schemes are preferable.
有损压缩误差对被动地震数据分析的影响
低成本节点和分布式声学传感(DAS)等新技术使连续收集宽带、高密度地震监测数据变得更加容易。为了缩短将数据从野外传输到计算中心的时间、降低存档要求并加快交互式数据分析和可视化,我们开始研究在被动地震阵列数据中使用有损压缩技术。特别是,我们不仅需要量化原始数据中的误差,还需要量化这些误差的频谱特征,以及这些误差在多大程度上会传播到微地震事件的可探测性和到达时间选取等结果中。我们比较了三种类型的有损压缩:稀疏阈值小波压缩、zfp 压缩和低秩奇异值分解压缩。我们将这些技术用于比较两个公开数据集的压缩方案:一个城市暗光纤 DAS 实验和一个地热田上方的地表 DAS 阵列。我们发现,根据所需的压缩水平以及保存大地震事件与小地震事件的重要性,不同的压缩方案更可取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信