Dynamics of Fricke–Painlevé VI Surfaces

Dynamics Pub Date : 2024-01-02 DOI:10.3390/dynamics4010001
Michel Planat, David Chester, K. Irwin
{"title":"Dynamics of Fricke–Painlevé VI Surfaces","authors":"Michel Planat, David Chester, K. Irwin","doi":"10.3390/dynamics4010001","DOIUrl":null,"url":null,"abstract":"The symmetries of a Riemann surface Σ∖{ai} with n punctures ai are encoded in its fundamental group π1(Σ). Further structure may be described through representations (homomorphisms) of π1 over a Lie group G as globalized by the character variety C=Hom(π1,G)/G. Guided by our previous work in the context of topological quantum computing (TQC) and genetics, we specialize on the four-punctured Riemann sphere Σ=S2(4) and the ‘space-time-spin’ group G=SL2(C). In such a situation, C possesses remarkable properties: (i) a representation is described by a three-dimensional cubic surface Va,b,c,d(x,y,z) with three variables and four parameters; (ii) the automorphisms of the surface satisfy the dynamical (non-linear and transcendental) Painlevé VI equation (or PVI); and (iii) there exists a finite set of 1 (Cayley–Picard)+3 (continuous platonic)+45 (icosahedral) solutions of PVI. In this paper, we feature the parametric representation of some solutions of PVI: (a) solutions corresponding to algebraic surfaces such as the Klein quartic and (b) icosahedral solutions. Applications to the character variety of finitely generated groups fp encountered in TQC or DNA/RNA sequences are proposed.","PeriodicalId":507568,"journal":{"name":"Dynamics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics4010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The symmetries of a Riemann surface Σ∖{ai} with n punctures ai are encoded in its fundamental group π1(Σ). Further structure may be described through representations (homomorphisms) of π1 over a Lie group G as globalized by the character variety C=Hom(π1,G)/G. Guided by our previous work in the context of topological quantum computing (TQC) and genetics, we specialize on the four-punctured Riemann sphere Σ=S2(4) and the ‘space-time-spin’ group G=SL2(C). In such a situation, C possesses remarkable properties: (i) a representation is described by a three-dimensional cubic surface Va,b,c,d(x,y,z) with three variables and four parameters; (ii) the automorphisms of the surface satisfy the dynamical (non-linear and transcendental) Painlevé VI equation (or PVI); and (iii) there exists a finite set of 1 (Cayley–Picard)+3 (continuous platonic)+45 (icosahedral) solutions of PVI. In this paper, we feature the parametric representation of some solutions of PVI: (a) solutions corresponding to algebraic surfaces such as the Klein quartic and (b) icosahedral solutions. Applications to the character variety of finitely generated groups fp encountered in TQC or DNA/RNA sequences are proposed.
Fricke-Painlevé VI 曲面的动力学特性
黎曼曲面 Σ∖{ai}有 n 个穿点 ai,其对称性被编码在它的基群 π1(Σ) 中。进一步的结构可以通过π1 在李群 G 上的表征(同态)来描述,表征全局化为特征多样性 C=Hom(π1,G)/G。根据我们以前在拓扑量子计算(TQC)和遗传学方面的工作,我们专门研究了四穿孔黎曼球 Σ=S2(4) 和 "时空自旋 "群 G=SL2(C)。在这种情况下,C 具有显著的性质:(i) 表示由三维立方曲面 Va,b,c,d(x,y,z)描述,具有三个变量和四个参数;(ii) 曲面的自变量满足动力学(非线性和超越性)Painlevé VI 方程(或 PVI);(iii) 存在 PVI 的 1(Cayley-Picard)+3(连续柏拉图)+45(二十面体)解的有限集合。在本文中,我们将介绍 PVI 某些解的参数表示:(a) 与克莱因四元数等代数曲面相对应的解,以及 (b) 二十面体解。本文提出了在 TQC 或 DNA/RNA 序列中遇到的有限生成群 fp 的特征多样性的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信