GWRPCA ALGORITHMIC FRAMEWORK: ANALYZING SPATIAL DYNAMICS OF POVERTY IN EAST JAVA PROVINCE

Harun Al Azies
{"title":"GWRPCA ALGORITHMIC FRAMEWORK: ANALYZING SPATIAL DYNAMICS OF POVERTY IN EAST JAVA PROVINCE","authors":"Harun Al Azies","doi":"10.23960/jitet.v12i1.3945","DOIUrl":null,"url":null,"abstract":"This study employs Regression Principal Component Analysis (RPCA) and Geographically Weighted Regression Principal Component Analysis (GWRPCA) algorithms to analyze poverty in East Java Province, using data from Statistics Indonesia (BPS). The research investigates regency/city-level poverty percentages and identifies influential factors such as education, literacy rates, housing conditions, and economic indicators. The results reveal that GWRPCA, with an 85.10% R2 value, outperforms RPCA, highlighting its effectiveness in capturing spatial diversity and providing a nuanced portrayal of poverty characteristics across regencies/cities in East Java. In conclusion, GWRPCA emerges as a powerful algorithmic tool for informing targeted poverty alleviation policies, offering insights into spatial variations. The study suggests future research directions to explore evolving spatial patterns and consider additional variables for a more comprehensive analysis. The findings emphasize the significance of spatial considerations in devising effective, context-specific strategies for each regency/city in East Java","PeriodicalId":313205,"journal":{"name":"Jurnal Informatika dan Teknik Elektro Terapan","volume":"80 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika dan Teknik Elektro Terapan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23960/jitet.v12i1.3945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs Regression Principal Component Analysis (RPCA) and Geographically Weighted Regression Principal Component Analysis (GWRPCA) algorithms to analyze poverty in East Java Province, using data from Statistics Indonesia (BPS). The research investigates regency/city-level poverty percentages and identifies influential factors such as education, literacy rates, housing conditions, and economic indicators. The results reveal that GWRPCA, with an 85.10% R2 value, outperforms RPCA, highlighting its effectiveness in capturing spatial diversity and providing a nuanced portrayal of poverty characteristics across regencies/cities in East Java. In conclusion, GWRPCA emerges as a powerful algorithmic tool for informing targeted poverty alleviation policies, offering insights into spatial variations. The study suggests future research directions to explore evolving spatial patterns and consider additional variables for a more comprehensive analysis. The findings emphasize the significance of spatial considerations in devising effective, context-specific strategies for each regency/city in East Java
GWRPCA 算法框架:分析东爪哇省的贫困空间动态
本研究采用回归主成分分析法(RPCA)和地理加权回归主成分分析法(GWRPCA)算法,利用印度尼西亚统计局(BPS)的数据分析东爪哇省的贫困状况。研究调查了县/市一级的贫困率,并确定了教育、识字率、住房条件和经济指标等影响因素。研究结果表明,GWRPCA 的 R2 值为 85.10%,优于 RPCA,凸显了其在捕捉空间多样性方面的有效性,并对东爪哇各县/市的贫困特征进行了细致入微的描述。总之,GWRPCA 是一种功能强大的算法工具,可为有针对性的扶贫政策提供信息,洞察空间变化。该研究提出了未来的研究方向,以探索不断变化的空间模式,并考虑更多变量以进行更全面的分析。研究结果强调,在为东爪哇的每个县/市制定有效的、针对具体情况的战略时,空间因素具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信