{"title":"Enhancing the long-term cycling stability of Ni-rich cathodes via regulating the length/width ratio of primary particle","authors":"Duzhao Han, Jilu Zhang, Mingyu Yang, Keyu Xie, Jiali Peng, Oleksandr Dolotko, Cheng Huang, Yuping Wu, Le Shao, Weibo Hua, Wei Tang","doi":"10.20517/energymater.2023.59","DOIUrl":null,"url":null,"abstract":"Ni-rich layered oxide cathode materials are promising candidates for high-specific-energy battery systems owing to their high reversible capacity. However, their widespread application is still severely impeded by severe capacity loss upon long-term cycling. It has been proven that the cyclic stability of Ni-rich cathode materials is closely related to their microstructure and morphology. Despite this, the influence of the microstructure of primary particles on the fatigue mechanism of Ni-rich cathode materials during prolonged cycling has not been fully understood. Here, two Ni-rich layered spherical agglomerate oxides consisting of the primary particle with different length/width ratios are successfully synthesized. It is found that the long-term structural stability of both materials strongly depends on the microstructure of primary crystallites, although there is no significant difference between the electrochemical and crystalline characteristics during the initial cycle. A higher primary particle length/width ratio could effectively inhibit the accumulation of microcracks and chemical degradation during long-term cycling, thereby promoting the electrochemical performance of the cathode materials (80% capacity retention after 200 cycles at 1 C compared to the 55% of the counterpart with a lower primary particle length/width ratio). This study highlights the structure-activity relationship between the primary particle microstructure and fatigue mechanisms during long-term cycling, thereby advancing the development of Ni-rich cathode materials.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"43 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ni-rich layered oxide cathode materials are promising candidates for high-specific-energy battery systems owing to their high reversible capacity. However, their widespread application is still severely impeded by severe capacity loss upon long-term cycling. It has been proven that the cyclic stability of Ni-rich cathode materials is closely related to their microstructure and morphology. Despite this, the influence of the microstructure of primary particles on the fatigue mechanism of Ni-rich cathode materials during prolonged cycling has not been fully understood. Here, two Ni-rich layered spherical agglomerate oxides consisting of the primary particle with different length/width ratios are successfully synthesized. It is found that the long-term structural stability of both materials strongly depends on the microstructure of primary crystallites, although there is no significant difference between the electrochemical and crystalline characteristics during the initial cycle. A higher primary particle length/width ratio could effectively inhibit the accumulation of microcracks and chemical degradation during long-term cycling, thereby promoting the electrochemical performance of the cathode materials (80% capacity retention after 200 cycles at 1 C compared to the 55% of the counterpart with a lower primary particle length/width ratio). This study highlights the structure-activity relationship between the primary particle microstructure and fatigue mechanisms during long-term cycling, thereby advancing the development of Ni-rich cathode materials.