Exploring the Use of Artificial Intelligence in Agent-Based Modeling Applications: A Bibliometric Study

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2024-01-03 DOI:10.3390/a17010021
Ștefan-Andrei Ionescu, Camelia Delcea, Nora Chirita, I. Nica
{"title":"Exploring the Use of Artificial Intelligence in Agent-Based Modeling Applications: A Bibliometric Study","authors":"Ștefan-Andrei Ionescu, Camelia Delcea, Nora Chirita, I. Nica","doi":"10.3390/a17010021","DOIUrl":null,"url":null,"abstract":"This research provides a comprehensive analysis of the dynamic interplay between agent-based modeling (ABM) and artificial intelligence (AI) through a meticulous bibliometric study. This study reveals a substantial increase in scholarly interest, particularly post-2006, peaking in 2021 and 2022, indicating a contemporary surge in research on the synergy between AI and ABM. Temporal trends and fluctuations prompt questions about influencing factors, potentially linked to technological advancements or shifts in research focus. The sustained increase in citations per document per year underscores the field’s impact, with the 2021 peak suggesting cumulative influence. Reference Publication Year Spectroscopy (RPYS) reveals historical patterns, and the recent decline prompts exploration into shifts in research focus. Lotka’s law is reflected in the author’s contributions, supported by Pareto analysis. Journal diversity signals extensive exploration of AI applications in ABM. Identifying impactful journals and clustering them per Bradford’s Law provides insights for researchers. Global scientific production dominance and regional collaboration maps emphasize the worldwide landscape. Despite acknowledging limitations, such as citation lag and interdisciplinary challenges, our study offers a global perspective with implications for future research and as a resource in the evolving AI and ABM landscape.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"38 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17010021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This research provides a comprehensive analysis of the dynamic interplay between agent-based modeling (ABM) and artificial intelligence (AI) through a meticulous bibliometric study. This study reveals a substantial increase in scholarly interest, particularly post-2006, peaking in 2021 and 2022, indicating a contemporary surge in research on the synergy between AI and ABM. Temporal trends and fluctuations prompt questions about influencing factors, potentially linked to technological advancements or shifts in research focus. The sustained increase in citations per document per year underscores the field’s impact, with the 2021 peak suggesting cumulative influence. Reference Publication Year Spectroscopy (RPYS) reveals historical patterns, and the recent decline prompts exploration into shifts in research focus. Lotka’s law is reflected in the author’s contributions, supported by Pareto analysis. Journal diversity signals extensive exploration of AI applications in ABM. Identifying impactful journals and clustering them per Bradford’s Law provides insights for researchers. Global scientific production dominance and regional collaboration maps emphasize the worldwide landscape. Despite acknowledging limitations, such as citation lag and interdisciplinary challenges, our study offers a global perspective with implications for future research and as a resource in the evolving AI and ABM landscape.
探索人工智能在基于代理的建模应用中的使用:文献计量学研究
本研究通过细致的文献计量学研究,对基于代理的建模(ABM)与人工智能(AI)之间的动态相互作用进行了全面分析。该研究揭示了学术兴趣的大幅增长,尤其是 2006 年之后,并在 2021 年和 2022 年达到顶峰,这表明当代有关人工智能与 ABM 协同作用的研究激增。时间趋势和波动引发了有关影响因素的问题,这些因素可能与技术进步或研究重点转移有关。每年每篇文献被引用次数的持续增长凸显了该领域的影响力,2021 年的峰值则表明该领域的影响力在不断累积。参考出版年光谱(RPYS)揭示了历史规律,而最近的下降则促使人们探索研究重点的转移。在帕累托分析的支持下,作者的贡献反映了洛特卡定律。期刊多样性预示着人工智能在人工智能管理(ABM)中应用的广泛探索。根据布拉德福德定律确定有影响力的期刊并对其进行分组,为研究人员提供了启示。全球科研成果的主导地位和地区合作图强调了世界范围内的格局。尽管我们的研究存在局限性,如引用滞后和跨学科挑战,但我们的研究提供了一个全球视角,对未来研究具有重要意义,也是不断发展的人工智能和人工智能管理领域的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信