Mathematical Modeling for a CHIKV Transmission Under the Influence of Periodic Environment

IF 0.7 Q2 MATHEMATICS
M. El Hajji, N. S. Alharbi, Mohammed H. Alharbi
{"title":"Mathematical Modeling for a CHIKV Transmission Under the Influence of Periodic Environment","authors":"M. El Hajji, N. S. Alharbi, Mohammed H. Alharbi","doi":"10.28924/2291-8639-22-2024-6","DOIUrl":null,"url":null,"abstract":"We studied a simple mathematical model for the chikungunya virus (CHIKV) spread under the influence of a seasonal environment with two routes of infection. We investigated the existence and the uniqueness of a bounded positive solution, and we showed that the system admits a global attractor set. We calculated the basic reproduction number R0 for the both cases, the fixed and seasonal environment which permits us to characterise both, the extinction and the persistence of the disease with regard to the values of R0. We proved that the virus-free equilibrium point is globally asymptotically stable if R0≤1, while the disease will persist if R0>1. Finally, we gave some numerical examples confirming the theoretical findings.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"57 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-22-2024-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We studied a simple mathematical model for the chikungunya virus (CHIKV) spread under the influence of a seasonal environment with two routes of infection. We investigated the existence and the uniqueness of a bounded positive solution, and we showed that the system admits a global attractor set. We calculated the basic reproduction number R0 for the both cases, the fixed and seasonal environment which permits us to characterise both, the extinction and the persistence of the disease with regard to the values of R0. We proved that the virus-free equilibrium point is globally asymptotically stable if R0≤1, while the disease will persist if R0>1. Finally, we gave some numerical examples confirming the theoretical findings.
周期性环境影响下 CHIKV 传播的数学建模
我们研究了基孔肯雅病毒(CHIKV)在两种感染途径的季节性环境影响下传播的简单数学模型。我们研究了有界正解的存在性和唯一性,并证明该系统存在一个全局吸引子集。我们计算了固定环境和季节环境两种情况下的基本繁殖数 R0,这使我们能够根据 R0 的值来描述疾病的消亡和持续。我们证明,如果 R0≤1 ,无病毒平衡点在全局上是渐近稳定的,而如果 R0>1 ,疾病将持续存在。最后,我们给出了一些数值示例,证实了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信