Babak Pourgholamali, Fatemeh Yosefbeyk, Masoud Ansar, Arash Zaminy, Shadman Nemati, Sina Ramezani, Hamidreza Bagheri, M. Faghani
{"title":"Phytochemical Content, Anti-inflammatory, Anti-apoptotic, and Antioxidant Activities of Dwarf Elder (Sambucus Ebulus) Against Nasal Polyposis","authors":"Babak Pourgholamali, Fatemeh Yosefbeyk, Masoud Ansar, Arash Zaminy, Shadman Nemati, Sina Ramezani, Hamidreza Bagheri, M. Faghani","doi":"10.5812/jjnpp-141803","DOIUrl":null,"url":null,"abstract":"Background: Sambucus Ebulus L. (SE) is known as an anti-inflammatory herb in traditional medicine. Nasosinusal polyposis is a common type of chronic nose and paranasal sinus inflammation. It is more common in patients with asthma and aspirin-exacerbated respiratory diseases. Objectives: This study aimed to investigate the apoptotic and anti-inflammatory effects of SE fruit extract on NP. Methods: The extract of SE fruit was prepared and subjected to total phenolic, anthocyanin, and flavonoid content measurement. The antioxidant activity was tested using the DPPH radical scavenging method. Nasal polyp (NP) tissue samples were collected from patients. Different concentrations of the SE extract were exposed to NPT samples for 24 hours. The expression of BAX and BAD proapoptotic markers, IL-5 and GM-CSF levels, and cell apoptosis were evaluated by real-time PCR, ELISA, and TUNEL assay, respectively. Results: The total phenolic and flavonoid contents of the extract were 38.44 (mg GAE/g extract) and 8.62 ± 0.12 (mg QE/g extract), respectively. Moreover, the total anthocyanin content was 0.56 ± 0.01 (mg C3GE/g extract). The IC50 of SE fruit extract in the DPPH radical scavenging assay was 190.78 ± 0.55 µg/mL. Also, BAX and BAD markers and TUNEL-positive cells were observed to increase in NP tissue samples in vitro after treatment with SE fruit extract (P < 0.05). The level of GM-CSF in the treated groups was reduced (P < 0.05). Conclusions: Our results showed that SE fruit extract was a good source of phenolic compounds that can induce anti-inflammatory and anti-apoptotic events in NP tissues, at least partly through increasing the expression of BAD and BAX apoptotic markers and reducing GM-CSF levels. The clinical applicability of SE fruit extract in the treatment of nasal polyps should be investigated in the future.","PeriodicalId":17745,"journal":{"name":"Jundishapur Journal of Natural Pharmaceutical Products","volume":"58 19","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jundishapur Journal of Natural Pharmaceutical Products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/jjnpp-141803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sambucus Ebulus L. (SE) is known as an anti-inflammatory herb in traditional medicine. Nasosinusal polyposis is a common type of chronic nose and paranasal sinus inflammation. It is more common in patients with asthma and aspirin-exacerbated respiratory diseases. Objectives: This study aimed to investigate the apoptotic and anti-inflammatory effects of SE fruit extract on NP. Methods: The extract of SE fruit was prepared and subjected to total phenolic, anthocyanin, and flavonoid content measurement. The antioxidant activity was tested using the DPPH radical scavenging method. Nasal polyp (NP) tissue samples were collected from patients. Different concentrations of the SE extract were exposed to NPT samples for 24 hours. The expression of BAX and BAD proapoptotic markers, IL-5 and GM-CSF levels, and cell apoptosis were evaluated by real-time PCR, ELISA, and TUNEL assay, respectively. Results: The total phenolic and flavonoid contents of the extract were 38.44 (mg GAE/g extract) and 8.62 ± 0.12 (mg QE/g extract), respectively. Moreover, the total anthocyanin content was 0.56 ± 0.01 (mg C3GE/g extract). The IC50 of SE fruit extract in the DPPH radical scavenging assay was 190.78 ± 0.55 µg/mL. Also, BAX and BAD markers and TUNEL-positive cells were observed to increase in NP tissue samples in vitro after treatment with SE fruit extract (P < 0.05). The level of GM-CSF in the treated groups was reduced (P < 0.05). Conclusions: Our results showed that SE fruit extract was a good source of phenolic compounds that can induce anti-inflammatory and anti-apoptotic events in NP tissues, at least partly through increasing the expression of BAD and BAX apoptotic markers and reducing GM-CSF levels. The clinical applicability of SE fruit extract in the treatment of nasal polyps should be investigated in the future.