Lie pairs

Q3 Mathematics
Letterio Gatto, Louis Rowen
{"title":"Lie pairs","authors":"Letterio Gatto, Louis Rowen","doi":"10.46298/cm.12413","DOIUrl":null,"url":null,"abstract":"Extending the theory of systems, we introduce a theory of Lie semialgebra\n``pairs'' which parallels the classical theory of Lie algebras, but with a\n``null set'' replacing $0$. A selection of examples is given. These Lie pairs\ncomprise two categories in addition to the universal algebraic definition, one\nwith ``weak Lie morphisms'' preserving null sums, and the other with\n``$\\preceq$-morphisms'' preserving a surpassing relation $\\preceq$ that\nreplaces equality. We provide versions of the PBW (Poincare-Birkhoff-Witt)\nTheorem in these three categories.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":"61 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.12413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Extending the theory of systems, we introduce a theory of Lie semialgebra ``pairs'' which parallels the classical theory of Lie algebras, but with a ``null set'' replacing $0$. A selection of examples is given. These Lie pairs comprise two categories in addition to the universal algebraic definition, one with ``weak Lie morphisms'' preserving null sums, and the other with ``$\preceq$-morphisms'' preserving a surpassing relation $\preceq$ that replaces equality. We provide versions of the PBW (Poincare-Birkhoff-Witt) Theorem in these three categories.
列对
通过对系统理论的扩展,我们引入了一种列半代数 "对 "的理论,它与经典的列代数理论相似,只是用一个 "空集 "代替了 $0$。本文列举了一些例子。除了通用代数定义之外,这些列对还包含两个范畴,一个是保留空和的 "弱列态式",另一个是保留取代相等的超越关系$\preceq$的"$\preceq$态式"。我们提供了这三个范畴的 PBW(Poincare-Birkhoff-Witt)定理的版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信