{"title":"Sub-Nanosecond, High Peak Power Yb:YAG/Cr4+:YAG/YVO4 Passively Q-Switched Raman Microchip Laser with the Emission of Multiple Pulses","authors":"Xiaolei Wang, Chaoyi Zhang, Yanlu Zhang, Shengying Fan, Xinqiang Ma, W. Cheng","doi":"10.3390/photonics11010061","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the capability of sub-nanosecond, high peak power Yb:YAG/Cr4+:YAG/YVO4 passively Q-switched Raman microchip lasers at 1134 nm operated in multiple pulses mode under quasi-continuous-wave (QCW) pumping. Total pulse energy for the Stokes laser was 1.8 mJ with a 4 mm YVO4 crystal and TOC = 16%. The corresponding pulse repetition rate reached 225 kHz within a single pumping pulse. By employing a compact plane-concave cavity and 5 mm YVO4 crystal, the single pulse energy for the Raman laser was further scaled up to 44 μJ. The corresponding peak power was 95 kW. A highest output pulse repetition rate of 87.8 kHz and shortest pulse duration of 464 ps were found for the Raman laser. The results indicate that the Raman microchip laser configuration under QCW LD pumping is a promising approach for developing high peak power, commercial and portable Raman lasers with a pulse duration of several hundred-picoseconds at a pulse repetition rate of hundred kilohertz.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"11 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010061","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper demonstrates the capability of sub-nanosecond, high peak power Yb:YAG/Cr4+:YAG/YVO4 passively Q-switched Raman microchip lasers at 1134 nm operated in multiple pulses mode under quasi-continuous-wave (QCW) pumping. Total pulse energy for the Stokes laser was 1.8 mJ with a 4 mm YVO4 crystal and TOC = 16%. The corresponding pulse repetition rate reached 225 kHz within a single pumping pulse. By employing a compact plane-concave cavity and 5 mm YVO4 crystal, the single pulse energy for the Raman laser was further scaled up to 44 μJ. The corresponding peak power was 95 kW. A highest output pulse repetition rate of 87.8 kHz and shortest pulse duration of 464 ps were found for the Raman laser. The results indicate that the Raman microchip laser configuration under QCW LD pumping is a promising approach for developing high peak power, commercial and portable Raman lasers with a pulse duration of several hundred-picoseconds at a pulse repetition rate of hundred kilohertz.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.