Enhancing Renewable Energy Storage Conversion Efficiency using ERFE with FFNN

Elqui Yeye Pari Condori, Ganga Rama Koteswara Rao, Rasheed Abdulkader, Kiran Kumar V, Josephine Pon Gloria Jeyaraj, Estela Quispe Ramos
{"title":"Enhancing Renewable Energy Storage Conversion Efficiency using ERFE with FFNN","authors":"Elqui Yeye Pari Condori, Ganga Rama Koteswara Rao, Rasheed Abdulkader, Kiran Kumar V, Josephine Pon Gloria Jeyaraj, Estela Quispe Ramos","doi":"10.53759/7669/jmc202404005","DOIUrl":null,"url":null,"abstract":"The 21st century witnesses a pivotal global shift towards Renewable Energy Sources (RES) to combat climate change. Nations are adopting wind, solar, hydro, and other sustainable energy forms. However, a primary concern is the inconsistent nature of these sources. Daily fluctuations, seasonal changes, and weather conditions sometimes make renewables like the sun and wind unreliable. The key to managing this unpredictability is efficient Energy Storage Systems (ESS), ensuring energy is saved during peak periods and used during low production times. However, existing ESSs are not flawless. Energy conversion and storage inefficiencies emerge due to temperature changes, inconsistent charge rates, and voltage fluctuations. These challenges diminish the quality of stored energy, resulting in potential waste. There is a unique chance to address these inefficiencies using the vast data from renewable systems. This research explores Machine Learning (ML), particularly Neural Networks (NN), to improve REES efficiencies. Analyzing data from Palm Springs wind farms, the study employs an Entropy-Based Recursive Feature Elimination (ERFE) coupled with Feed-Forward Neural Networks (FFNN). ERFE utilizes entropy to prioritize essential features, reducing redundant data and computational demands. The tailored FFNN then predicts energy conversion rates, aiming to enhance energy storage conversion and maximize the usability of generated Renewable Energy (RE).","PeriodicalId":516151,"journal":{"name":"Journal of Machine and Computing","volume":"33 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53759/7669/jmc202404005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The 21st century witnesses a pivotal global shift towards Renewable Energy Sources (RES) to combat climate change. Nations are adopting wind, solar, hydro, and other sustainable energy forms. However, a primary concern is the inconsistent nature of these sources. Daily fluctuations, seasonal changes, and weather conditions sometimes make renewables like the sun and wind unreliable. The key to managing this unpredictability is efficient Energy Storage Systems (ESS), ensuring energy is saved during peak periods and used during low production times. However, existing ESSs are not flawless. Energy conversion and storage inefficiencies emerge due to temperature changes, inconsistent charge rates, and voltage fluctuations. These challenges diminish the quality of stored energy, resulting in potential waste. There is a unique chance to address these inefficiencies using the vast data from renewable systems. This research explores Machine Learning (ML), particularly Neural Networks (NN), to improve REES efficiencies. Analyzing data from Palm Springs wind farms, the study employs an Entropy-Based Recursive Feature Elimination (ERFE) coupled with Feed-Forward Neural Networks (FFNN). ERFE utilizes entropy to prioritize essential features, reducing redundant data and computational demands. The tailored FFNN then predicts energy conversion rates, aiming to enhance energy storage conversion and maximize the usability of generated Renewable Energy (RE).
利用 ERFE 和 FFNN 提高可再生能源存储转换效率
21 世纪,全球正在向可再生能源(RES)转变,以应对气候变化。各国正在采用风能、太阳能、水能和其他可持续能源形式。然而,这些能源的不稳定性是一个主要问题。日常波动、季节变化和天气条件有时会使太阳能和风能等可再生能源变得不可靠。管理这种不可预测性的关键在于高效的储能系统(ESS),以确保在高峰期节省能源,在低产期使用能源。然而,现有的 ESS 并非完美无缺。由于温度变化、充电率不一致和电压波动等原因,能量转换和存储效率低下。这些挑战降低了存储能量的质量,造成了潜在的浪费。利用来自可再生系统的大量数据来解决这些低效问题是一个独特的机会。本研究探索机器学习(ML),特别是神经网络(NN),以提高可再生能源系统的效率。通过分析棕榈泉风电场的数据,该研究采用了基于熵的递归特征消除(ERFE)和前馈神经网络(FFNN)。ERFE 利用熵对基本特征进行优先排序,减少冗余数据和计算需求。然后,量身定制的前馈神经网络会预测能量转换率,目的是加强储能转换,最大限度地提高所产生的可再生能源(RE)的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信