Deep Reinforcement Learning for Adaptive Stock Trading

Lei Zhao, Bowen Deng, Liang Wu, Chang Liu, Min Guo, Youjia Guo
{"title":"Deep Reinforcement Learning for Adaptive Stock Trading","authors":"Lei Zhao, Bowen Deng, Liang Wu, Chang Liu, Min Guo, Youjia Guo","doi":"10.4018/joeuc.335083","DOIUrl":null,"url":null,"abstract":"In this study, the authors explore how financial institutions make decisions about stock trading strategies in a rapidly changing and complex environment. These decisions are made with limited, often inconsistent information and depend on the current and future strategies of both the institution itself and its competitors. They develop a dynamic game model that factors in this imperfect information and the evolving nature of decision-making. To model reward transitions, they utilize a combination of t-Copula simulation of a non-stationary Markov chain, probabilistic fuzzy regression, and chaos optimization algorithms. They then apply deep q-network, a method from deep reinforcement learning, to ensure the effectiveness of the chosen strategy during ongoing decision-making. The approach is significant for both researchers across fields and practical professionals in the finance industry.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"65 50","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.335083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the authors explore how financial institutions make decisions about stock trading strategies in a rapidly changing and complex environment. These decisions are made with limited, often inconsistent information and depend on the current and future strategies of both the institution itself and its competitors. They develop a dynamic game model that factors in this imperfect information and the evolving nature of decision-making. To model reward transitions, they utilize a combination of t-Copula simulation of a non-stationary Markov chain, probabilistic fuzzy regression, and chaos optimization algorithms. They then apply deep q-network, a method from deep reinforcement learning, to ensure the effectiveness of the chosen strategy during ongoing decision-making. The approach is significant for both researchers across fields and practical professionals in the finance industry.
自适应股票交易的深度强化学习
在本研究中,作者探讨了金融机构如何在瞬息万变的复杂环境中就股票交易策略做出决策。这些决策是在信息有限且往往不一致的情况下做出的,并取决于机构本身及其竞争对手当前和未来的战略。他们建立了一个动态博弈模型,将这种不完全信息和决策不断变化的性质考虑在内。为了建立奖励转换模型,他们结合使用了非稳态马尔可夫链的 t-Copula 仿真、概率模糊回归和混沌优化算法。然后,他们应用了深度强化学习中的一种方法--深度 q 网络,以确保所选策略在持续决策过程中的有效性。这种方法对各领域的研究人员和金融业的实际专业人员都具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信