Bases of fixed point subalgebras on nilpotent Leibniz algebras

Zeynep YAPTI ÖZKURT
{"title":"Bases of fixed point subalgebras on nilpotent Leibniz algebras","authors":"Zeynep YAPTI ÖZKURT","doi":"10.25092/baunfbed.1332488","DOIUrl":null,"url":null,"abstract":"Let K be a field of characteristic zero, X={x_(1,) x_2,…,x_n} and R_m={r_(1,) ,…,r_m} be two sets of variables, F be the free left nitpotent Leibniz algebra generated by X, and K[R_m ] be the commutative polynomial algebra generated by R_m over the base field K. The fixed point subalgebra of an automorphism φ is the subalgebra of F consisting of elements that are invariant under the automorphism. In this work, we consider specific automorphisms of F and determine the fixed point subalgebras of these automorphisms. Then, we find bases of these fixed point subalgebras. In addition, we get generators of these subalgebras as a free K[R_m ] -module.","PeriodicalId":486927,"journal":{"name":"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi","volume":"61 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.25092/baunfbed.1332488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let K be a field of characteristic zero, X={x_(1,) x_2,…,x_n} and R_m={r_(1,) ,…,r_m} be two sets of variables, F be the free left nitpotent Leibniz algebra generated by X, and K[R_m ] be the commutative polynomial algebra generated by R_m over the base field K. The fixed point subalgebra of an automorphism φ is the subalgebra of F consisting of elements that are invariant under the automorphism. In this work, we consider specific automorphisms of F and determine the fixed point subalgebras of these automorphisms. Then, we find bases of these fixed point subalgebras. In addition, we get generators of these subalgebras as a free K[R_m ] -module.
零点莱布尼兹代数的定点子代数基础
设 K 是特征为零的域,X={x_(1,) x_2,...,x_n} 和 R_m={r_(1,) ,...,r_m} 是两个变量集,F 是由 X 生成的自由左硝化莱布尼兹代数,K[R_m ] 是由 R_m 在基域 K 上生成的交换多项式代数。自变量 φ 的定点子代数是 F 的子代数,由在自变量作用下不变的元素组成。在本研究中,我们将考虑 F 的特定自变量,并确定这些自变量的定点子代数。然后,我们找到这些定点子代数的基。此外,我们还得到了这些子代数作为自由 K[R_m ] 模块的生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信