{"title":"PREPARATION, CHARACTERIZATION AND EVALUATION OF MYRICETIN-LOADED NANOEMULSION FOR THERAPEUTIC EFFICACY IN WOUND HEALING","authors":"Tanvir Y. Shaikh, S. Lodhi","doi":"10.22159/ijap.2024v16i1.49112","DOIUrl":null,"url":null,"abstract":"Objective: Aim of the present study was the development, optimization and evaluation of myricetin-loaded nanoemulsion gel for wound healing.\nMethods: Myricetin nanoemulsion was prepared by selecting Peanut oil as oil (wt %), Tween 20 and Polyethylene glycol 400 as surfactant and cosurfactant (Smix) and aqueous phase water. Performance of nanoemulsion gel was evaluated by wound healing activity tested against wound contraction, hydroxyproline content, protein content and antioxidant assay.\nResults: The optimized nanoemulsion (NEF1) exhibited appreciable stability concerning droplet size and PDI when stored at 5 ᵒC, 25 ᵒC and 40ᵒC up to three months. Morphological characterization by TEM indicated a spherical shape. Wound healing effect was observed through a significant (p<0.5) increase in hydroxyproline content, protein content and antioxidant status in wound tissue. The level of superoxide dismutase (SOD) and catalase were found to increase significantly in wound tissue after treatment with Myricetin loaded nanoemulsion (MYCT-NE) gel, as well as results were comparable to Betadine cream.\nConclusion: In conclusion, MYCT-NE gel was found potent wound healing effect through the reduction of oxidative stress and epithelialization of tissue.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"23 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22159/ijap.2024v16i1.49112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Aim of the present study was the development, optimization and evaluation of myricetin-loaded nanoemulsion gel for wound healing.
Methods: Myricetin nanoemulsion was prepared by selecting Peanut oil as oil (wt %), Tween 20 and Polyethylene glycol 400 as surfactant and cosurfactant (Smix) and aqueous phase water. Performance of nanoemulsion gel was evaluated by wound healing activity tested against wound contraction, hydroxyproline content, protein content and antioxidant assay.
Results: The optimized nanoemulsion (NEF1) exhibited appreciable stability concerning droplet size and PDI when stored at 5 ᵒC, 25 ᵒC and 40ᵒC up to three months. Morphological characterization by TEM indicated a spherical shape. Wound healing effect was observed through a significant (p<0.5) increase in hydroxyproline content, protein content and antioxidant status in wound tissue. The level of superoxide dismutase (SOD) and catalase were found to increase significantly in wound tissue after treatment with Myricetin loaded nanoemulsion (MYCT-NE) gel, as well as results were comparable to Betadine cream.
Conclusion: In conclusion, MYCT-NE gel was found potent wound healing effect through the reduction of oxidative stress and epithelialization of tissue.
期刊介绍:
International Journal of Applied Pharmaceutics (Int J App Pharm) is a peer-reviewed, bimonthly (onward March 2017) open access journal devoted to the excellence and research in the pure pharmaceutics. This Journal publishes original research work that contributes significantly to further the scientific knowledge in conventional dosage forms, formulation development and characterization, controlled and novel drug delivery, biopharmaceutics, pharmacokinetics, molecular drug design, polymer-based drug delivery, nanotechnology, nanocarrier based drug delivery, novel routes and modes of delivery; responsive delivery systems, prodrug design, development and characterization of the targeted drug delivery systems, ligand carrier interactions etc. However, the other areas which are related to the pharmaceutics are also entertained includes physical pharmacy and API (active pharmaceutical ingredients) analysis. The Journal publishes original research work either as a Original Article or as a Short Communication. Review Articles on a current topic in the said fields are also considered for publication in the Journal.