Bhargavi Posinasetty, Srividya Kommineni, R. K. Kumarachari, Kishore Bandarapalle, Syed Naziya, Chanambatla Yamini, Daruri Seemanthini
{"title":"DESIGN AND OPTIMIZATION OF NANO ENCAPSULATED BIO COMPOUNDS OF ASPARAGUS RACEMOSUS: BOX BEHNKEN APPROACH","authors":"Bhargavi Posinasetty, Srividya Kommineni, R. K. Kumarachari, Kishore Bandarapalle, Syed Naziya, Chanambatla Yamini, Daruri Seemanthini","doi":"10.22159/ijap.2024v16i1.49377","DOIUrl":null,"url":null,"abstract":"Objective: The current study’s objective is to develop and optimize nanoencapsulated bio compounds of Asparagus racemosus (BCAR) utilizing the ionic gelation process to target the kidney for antiurolithiatic activity.\nMethods: Nanoencapsulated BCAR was prepared employing the ionic gelation method. Box Behnken Design (BBD) 3-factor, 3-level is used to examine the effects of formulation parameters and to enhance the desired responses. Characterization studies include Fourier transform infrared (FTIR), X-ray diffraction (XRD), particle size, zeta potential, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) performed to study the quality of optimized nanoparticles.\nResults: Mathematical equations and response surface plots were used to relate the dependent and independent variables. Diagnostic charts were used to show the varied factor-level permutations. The percentages of entrapment efficiency (% EE) and drug release (% DR) used in evaluation studies of optimized bio compounds of BCAR nanoparticles (OBCARNPs) were determined to be 80.67% and 77.4%, respectively. The Fourier transform infrared (FTIR) results showed that chitosan, sodium tripolyphosphate (NaTPP), and BCAR were compatible. Due to chitosan and NaTPP gelation in the case of OBCBANPs, X-ray diffraction (XRD) analyses have acknowledged the crystallinity. The particle size and zeta potential of the optimized formulation, found to be 48.8 nm and 14.1 mV, respectively, indicate the nanoparticles are in the nanorange and possess extreme stability by preventing particle convergence. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies reveal that the optimized formulation nanoparticles are spherical in shape, homogeneous, and have little aggregation. The accelerated stability studies showed that the optimized formulation was stable at different temperatures and relative humidity.\nConclusion: The stable, optimized formulation was prepared, evaluated, and characterized. BBD is employed to optimize the formulation by minimizing the number of experimental runs and enhancing the desired responses. The optimized formulation further needs to investigate the in vivo studies for antiurolithiatic activity by targeting the kidney.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"30 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22159/ijap.2024v16i1.49377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The current study’s objective is to develop and optimize nanoencapsulated bio compounds of Asparagus racemosus (BCAR) utilizing the ionic gelation process to target the kidney for antiurolithiatic activity.
Methods: Nanoencapsulated BCAR was prepared employing the ionic gelation method. Box Behnken Design (BBD) 3-factor, 3-level is used to examine the effects of formulation parameters and to enhance the desired responses. Characterization studies include Fourier transform infrared (FTIR), X-ray diffraction (XRD), particle size, zeta potential, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) performed to study the quality of optimized nanoparticles.
Results: Mathematical equations and response surface plots were used to relate the dependent and independent variables. Diagnostic charts were used to show the varied factor-level permutations. The percentages of entrapment efficiency (% EE) and drug release (% DR) used in evaluation studies of optimized bio compounds of BCAR nanoparticles (OBCARNPs) were determined to be 80.67% and 77.4%, respectively. The Fourier transform infrared (FTIR) results showed that chitosan, sodium tripolyphosphate (NaTPP), and BCAR were compatible. Due to chitosan and NaTPP gelation in the case of OBCBANPs, X-ray diffraction (XRD) analyses have acknowledged the crystallinity. The particle size and zeta potential of the optimized formulation, found to be 48.8 nm and 14.1 mV, respectively, indicate the nanoparticles are in the nanorange and possess extreme stability by preventing particle convergence. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies reveal that the optimized formulation nanoparticles are spherical in shape, homogeneous, and have little aggregation. The accelerated stability studies showed that the optimized formulation was stable at different temperatures and relative humidity.
Conclusion: The stable, optimized formulation was prepared, evaluated, and characterized. BBD is employed to optimize the formulation by minimizing the number of experimental runs and enhancing the desired responses. The optimized formulation further needs to investigate the in vivo studies for antiurolithiatic activity by targeting the kidney.
期刊介绍:
International Journal of Applied Pharmaceutics (Int J App Pharm) is a peer-reviewed, bimonthly (onward March 2017) open access journal devoted to the excellence and research in the pure pharmaceutics. This Journal publishes original research work that contributes significantly to further the scientific knowledge in conventional dosage forms, formulation development and characterization, controlled and novel drug delivery, biopharmaceutics, pharmacokinetics, molecular drug design, polymer-based drug delivery, nanotechnology, nanocarrier based drug delivery, novel routes and modes of delivery; responsive delivery systems, prodrug design, development and characterization of the targeted drug delivery systems, ligand carrier interactions etc. However, the other areas which are related to the pharmaceutics are also entertained includes physical pharmacy and API (active pharmaceutical ingredients) analysis. The Journal publishes original research work either as a Original Article or as a Short Communication. Review Articles on a current topic in the said fields are also considered for publication in the Journal.