Development of a simple and fast method named solvent‐assisted dispersive solid phase extraction for trace detection of triazole fungicides in water, fruit, vegetable, and agricultural soil samples
Zolfaghar Aladaghlo, Ali Sahragard, Alireza Fakhari
{"title":"Development of a simple and fast method named solvent‐assisted dispersive solid phase extraction for trace detection of triazole fungicides in water, fruit, vegetable, and agricultural soil samples","authors":"Zolfaghar Aladaghlo, Ali Sahragard, Alireza Fakhari","doi":"10.1002/sscp.202300191","DOIUrl":null,"url":null,"abstract":"Solvent‐assisted dispersive solid‐phase extraction (SA‐DSPE) approach was developed to measure triazole fungicides (TFs). In the SA‐DSPE technique, the addition of 1000 μL of ethanol as a disperser solvent, along with a small quantity of benzil as a sorbent to the sample solution, led to a cloudy solution. After completion of the extraction, the mixture was subjected to centrifugation to isolate benzil. Next, benzil was dissolved in ethanol, and the resulting solution was subsequently analyzed by a gas chromatography‐flame ionization detector. This method demonstrated high linearity (R2 > 0.9963) and repeatability (relative standard deviation % < 4.3) for the quantification of TFs under the optimal conditions (sorbent: benzil, amount of benzil: 2% w/v, pH of solution: 7.0, disperser solvent: ethanol, volumes of ethanol: 1000 μL, centrifuge time: 3 min, extraction temperature: 25°C, and ionic strength: without salt addition). The proposed SA‐DSPE yielded detection limits, quantification limits, and preconcentration factors within the ranges of 0.3–0.9 ng/mL, 1.0–3.0 ng/mL, and 419–426, respectively. Finally, the validated method was employed to determine TFs in a diverse range of real samples, encompassing waters, fruits, vegetables, and agricultural soils, with relative recoveries ranging from 93.0% to 104%.","PeriodicalId":508518,"journal":{"name":"SEPARATION SCIENCE PLUS","volume":"33 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEPARATION SCIENCE PLUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sscp.202300191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Solvent‐assisted dispersive solid‐phase extraction (SA‐DSPE) approach was developed to measure triazole fungicides (TFs). In the SA‐DSPE technique, the addition of 1000 μL of ethanol as a disperser solvent, along with a small quantity of benzil as a sorbent to the sample solution, led to a cloudy solution. After completion of the extraction, the mixture was subjected to centrifugation to isolate benzil. Next, benzil was dissolved in ethanol, and the resulting solution was subsequently analyzed by a gas chromatography‐flame ionization detector. This method demonstrated high linearity (R2 > 0.9963) and repeatability (relative standard deviation % < 4.3) for the quantification of TFs under the optimal conditions (sorbent: benzil, amount of benzil: 2% w/v, pH of solution: 7.0, disperser solvent: ethanol, volumes of ethanol: 1000 μL, centrifuge time: 3 min, extraction temperature: 25°C, and ionic strength: without salt addition). The proposed SA‐DSPE yielded detection limits, quantification limits, and preconcentration factors within the ranges of 0.3–0.9 ng/mL, 1.0–3.0 ng/mL, and 419–426, respectively. Finally, the validated method was employed to determine TFs in a diverse range of real samples, encompassing waters, fruits, vegetables, and agricultural soils, with relative recoveries ranging from 93.0% to 104%.