Third-degree B-spline collocation method for singularly perturbed time delay parabolic problem with two parameters

IF 1.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
I. T. Daba, Wondwosen Gebeyaw Melesse, Guta Demisu Kebede
{"title":"Third-degree B-spline collocation method for singularly perturbed time delay parabolic problem with two parameters","authors":"I. T. Daba, Wondwosen Gebeyaw Melesse, Guta Demisu Kebede","doi":"10.3389/fams.2023.1260651","DOIUrl":null,"url":null,"abstract":"This study deals with a fitted third-degree B-spline collocation method for two parametric singularly perturbed parabolic problems with a time lag. The proposed method comprises the Cranck-Nicolson method for time discretization and the third-degree B-spline method spatial variable discretization. Rigorous numerical experimentations were carried out on some test examples. The obtained numerical results depict that the proposed scheme is more accurate than some methods existing in the literature. Parameter convergence analysis of the scheme is carried out and shows the present scheme is (ε−μ)−uniform convergent with the order of convergence ((Δt)2 + ℓ2).","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":"34 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1260651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study deals with a fitted third-degree B-spline collocation method for two parametric singularly perturbed parabolic problems with a time lag. The proposed method comprises the Cranck-Nicolson method for time discretization and the third-degree B-spline method spatial variable discretization. Rigorous numerical experimentations were carried out on some test examples. The obtained numerical results depict that the proposed scheme is more accurate than some methods existing in the literature. Parameter convergence analysis of the scheme is carried out and shows the present scheme is (ε−μ)−uniform convergent with the order of convergence ((Δt)2 + ℓ2).
带两个参数的奇异扰动时延抛物问题的三度 B 样条配位法
本研究针对两个具有时滞的参数奇异扰动抛物问题,提出了一种拟合的三度 B 样条配位法。提出的方法包括时间离散的 Cranck-Nicolson 法和空间变量离散的三度 B 样条法。对一些测试实例进行了严格的数值实验。所获得的数值结果表明,所提出的方案比文献中已有的一些方法更加精确。对方案进行了参数收敛分析,结果表明本方案是 (ε-μ) 均匀收敛的,收敛阶数为 ((Δt)2 + ℓ2) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信