New Approach to Solving Fuzzy Multiobjective Linear Fractional Optimization Problems

IF 0.7 Q2 MATHEMATICS
Jean De La Croix Sama, Doubassi Parfait Traore, K. Some
{"title":"New Approach to Solving Fuzzy Multiobjective Linear Fractional Optimization Problems","authors":"Jean De La Croix Sama, Doubassi Parfait Traore, K. Some","doi":"10.28924/2291-8639-22-2024-11","DOIUrl":null,"url":null,"abstract":"In this paper, an iterative approach based on the use of fuzzy parametric functions is proposed to find the best preferred optimal solution to a fuzzy multiobjective linear fractional optimization problem. From this approach, the decision-maker imposes tolerance values or termination conditions for each parametric objective function. Indeed, the fuzzy parametric values are computed iteratively, and each fuzzy fractional objective is transformed into a fuzzy non-fractional parametric function using these values of parameters. The core value of fuzzy numbers is used to transform the fuzzy multiobjective non-fractional problem into a deterministic multiobjective non-fractional problem, and the ε-constraint approach is employed to obtain a linear single objective optimization problem. Finally, by setting the value of parameter ε, the Dangtzig simplex method is used to obtain an optimal solution. Therefore, the number of solutions is equal to the number of used values, and the optimal solution is chosen according to the preference of the decision-maker. We have provided a didactic example to highlight the step of our approach and its numerical performances.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"33 13","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-22-2024-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an iterative approach based on the use of fuzzy parametric functions is proposed to find the best preferred optimal solution to a fuzzy multiobjective linear fractional optimization problem. From this approach, the decision-maker imposes tolerance values or termination conditions for each parametric objective function. Indeed, the fuzzy parametric values are computed iteratively, and each fuzzy fractional objective is transformed into a fuzzy non-fractional parametric function using these values of parameters. The core value of fuzzy numbers is used to transform the fuzzy multiobjective non-fractional problem into a deterministic multiobjective non-fractional problem, and the ε-constraint approach is employed to obtain a linear single objective optimization problem. Finally, by setting the value of parameter ε, the Dangtzig simplex method is used to obtain an optimal solution. Therefore, the number of solutions is equal to the number of used values, and the optimal solution is chosen according to the preference of the decision-maker. We have provided a didactic example to highlight the step of our approach and its numerical performances.
解决模糊多目标线性分数优化问题的新方法
本文提出了一种基于模糊参数函数的迭代方法,用于寻找模糊多目标线性分数优化问题的最佳优选解。根据这种方法,决策者为每个参数目标函数设定容许值或终止条件。事实上,模糊参数值是通过迭代计算得出的,每个模糊分数目标都是通过这些参数值转化为模糊非分数参数函数的。利用模糊数的核心值将模糊多目标非分数问题转化为确定性多目标非分数问题,并采用ε约束方法得到线性单目标优化问题。最后,通过设置参数 ε 的值,利用 Dangtzig 单纯形法得到最优解。因此,解的数量等于所用值的数量,并根据决策者的偏好选择最优解。我们提供了一个教学示例,以强调我们的方法步骤及其数值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信