{"title":"Low-stiffness comfort shift characteristics of a permanent magnet two-speed transmission for low-speed EV","authors":"Junliang Du, Dawei Liu, Tingzhi Ren","doi":"10.1177/09544070231221307","DOIUrl":null,"url":null,"abstract":"Jerk during shift in mechanical two-speed transmissions often have a serious impact on driving comfort. Within this paper, a proposed two-speed permanent magnet transmission is presented for low-speed electric vehicles, which utilizes magnetic non-contact transmission. This transmission is composed of a magnetic drive mechanism, a clutch, and a selectable one-way clutch. Then, a mathematical model is established for the magnetic-machine composite transmission based on the principles of magnetic field modulation and the concentrated parameter method. Additionally, a shift method that operates without power interruption is presented. Finally, the process of shifting is simulated for permanent magnet drive systems with varying magnetic coupling stiffness in a MATLAB/Simulink environment. The resulting torque calculations are compared with those obtained from the commercial software Maxwell. Simulation results indicate that the two-speed permanent magnet transmission does not experience power interruption during upshifting. Less jerk when shifting gears. Low magnetic coupling stiffness can reduce high-frequency vibration and enhance shift comfort. The findings from the torque calculations obtained through the proposed model align with those obtained from the commercial software Maxwell.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544070231221307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Jerk during shift in mechanical two-speed transmissions often have a serious impact on driving comfort. Within this paper, a proposed two-speed permanent magnet transmission is presented for low-speed electric vehicles, which utilizes magnetic non-contact transmission. This transmission is composed of a magnetic drive mechanism, a clutch, and a selectable one-way clutch. Then, a mathematical model is established for the magnetic-machine composite transmission based on the principles of magnetic field modulation and the concentrated parameter method. Additionally, a shift method that operates without power interruption is presented. Finally, the process of shifting is simulated for permanent magnet drive systems with varying magnetic coupling stiffness in a MATLAB/Simulink environment. The resulting torque calculations are compared with those obtained from the commercial software Maxwell. Simulation results indicate that the two-speed permanent magnet transmission does not experience power interruption during upshifting. Less jerk when shifting gears. Low magnetic coupling stiffness can reduce high-frequency vibration and enhance shift comfort. The findings from the torque calculations obtained through the proposed model align with those obtained from the commercial software Maxwell.