Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding

Fumiaki Amano, Keisuke Tsushiro
{"title":"Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding","authors":"Fumiaki Amano, Keisuke Tsushiro","doi":"10.20517/energymater.2023.77","DOIUrl":null,"url":null,"abstract":"This review provides an overview of recent advancements in vapor-fed photoelectrochemical (PEC) systems specifically designed for utilizing water vapor as a hydrogen resource. The PEC system under water vapor feeding utilizes a proton exchange membrane as a solid polymer electrolyte. Additionally, it utilizes gas-diffusion photoelectrodes composed of a fibrous conductive substrate with macroporous structures. Herein, the porous photoelectrodes are composed of n-type oxides for oxygen evolution reactions and used with a Pt electrocatalyst cathode for hydrogen evolution reactions. The topics covered include the conceptual framework of vapor-fed PEC hydrogen production, strategic design of gas-phase PEC reaction interfaces, and development of porous photoanodes such as titanium dioxide (TiO2), strontium titanate (SrTiO3), tungsten trioxide (WO3), and bismuth vanadate (BiVO4). A significant enhancement in the PEC efficiency was achieved through the application of a thin proton-conducting ionomer film on these porous photoelectrodes for surface functionalization. The rational design of proton exchange membrane-based PEC cells will play a pivotal role in realizing renewable-energy-driven hydrogen production from atmospheric humidity in the air.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"52 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This review provides an overview of recent advancements in vapor-fed photoelectrochemical (PEC) systems specifically designed for utilizing water vapor as a hydrogen resource. The PEC system under water vapor feeding utilizes a proton exchange membrane as a solid polymer electrolyte. Additionally, it utilizes gas-diffusion photoelectrodes composed of a fibrous conductive substrate with macroporous structures. Herein, the porous photoelectrodes are composed of n-type oxides for oxygen evolution reactions and used with a Pt electrocatalyst cathode for hydrogen evolution reactions. The topics covered include the conceptual framework of vapor-fed PEC hydrogen production, strategic design of gas-phase PEC reaction interfaces, and development of porous photoanodes such as titanium dioxide (TiO2), strontium titanate (SrTiO3), tungsten trioxide (WO3), and bismuth vanadate (BiVO4). A significant enhancement in the PEC efficiency was achieved through the application of a thin proton-conducting ionomer film on these porous photoelectrodes for surface functionalization. The rational design of proton exchange membrane-based PEC cells will play a pivotal role in realizing renewable-energy-driven hydrogen production from atmospheric humidity in the air.
质子交换膜光电化学电池在水蒸气供给条件下进行水分离
本综述概述了专为利用水蒸气作为氢资源而设计的水蒸气馈入光电化学(PEC)系统的最新进展。水蒸气馈入光电化学系统利用质子交换膜作为固体聚合物电解质。此外,它还利用了由具有大孔结构的纤维状导电基板组成的气体扩散光电极。在这里,多孔光电极由 n 型氧化物组成,用于氧进化反应,并与铂电催化剂阴极一起用于氢进化反应。研究主题包括气传 PEC 制氢的概念框架、气相 PEC 反应界面的战略设计以及多孔光阳极的开发,如二氧化钛 (TiO2)、钛酸锶 (SrTiO3)、三氧化钨 (WO3) 和钒酸铋 (BiVO4)。通过在这些多孔光电极上应用质子传导离子膜薄膜进行表面功能化,质子交换效率得到了显著提高。基于质子交换膜的 PEC 电池的合理设计将在利用空气中的大气湿度实现可再生能源驱动的制氢过程中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信