{"title":"Effects of Rotation and Magnetic Field on Rayliegh Benard Convection","authors":"Abdelfatah Abasher, Elsiddeg Ali, Hajer Adam","doi":"10.28924/2291-8639-22-2024-7","DOIUrl":null,"url":null,"abstract":"In this paper, a numerical method based on the Chebyshev tau method is applied to analyze the effects of rotation and magnetic fields on Rayleigh-Bénard convection. The rotation and magnetic fields are assumed to be parallel to the vertical direction. The perturbation equations and boundary conditions are analyzed using normal mode analysis. The equations are then converted into a non-dimensional form and transformed into a generalized eigenvalue problem of the form AX=RBX, where R represents the eigenvalue corresponding to the Rayleigh number. The MATLAB software package is utilized to determine the relationship between the Rayleigh number and the Taylor number (rate of rotation), as well as the relationship between the Rayleigh number and the magnetic parameter (strength of the magnetic field) for different boundary conditions (free-free, rigid-rigid, or one free and the other rigid). The numerical and graphical results are presented and found to be in full agreement with the results obtained from previous analytical and numerical studies of the problem.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"54 21","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-22-2024-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a numerical method based on the Chebyshev tau method is applied to analyze the effects of rotation and magnetic fields on Rayleigh-Bénard convection. The rotation and magnetic fields are assumed to be parallel to the vertical direction. The perturbation equations and boundary conditions are analyzed using normal mode analysis. The equations are then converted into a non-dimensional form and transformed into a generalized eigenvalue problem of the form AX=RBX, where R represents the eigenvalue corresponding to the Rayleigh number. The MATLAB software package is utilized to determine the relationship between the Rayleigh number and the Taylor number (rate of rotation), as well as the relationship between the Rayleigh number and the magnetic parameter (strength of the magnetic field) for different boundary conditions (free-free, rigid-rigid, or one free and the other rigid). The numerical and graphical results are presented and found to be in full agreement with the results obtained from previous analytical and numerical studies of the problem.
本文采用基于切比雪夫 tau 法的数值方法分析了旋转和磁场对雷利-贝纳德对流的影响。假设旋转和磁场平行于垂直方向。扰动方程和边界条件采用法模分析法进行分析。然后将方程转换为非维度形式,并转化为 AX=RBX 形式的广义特征值问题,其中 R 代表与瑞利数相对应的特征值。利用 MATLAB 软件包确定了雷利数与泰勒数(旋转速率)之间的关系,以及不同边界条件(自由-自由、刚性-刚性或一自由一刚性)下雷利数与磁参数(磁场强度)之间的关系。结果显示,数值和图形结果与之前对该问题的分析和数值研究结果完全一致。