ECS: an interactive tool for data quality assurance

Christian Sieberichs, Simon Geerkens, Alexander Braun, Thomas Waschulzik
{"title":"ECS: an interactive tool for data quality assurance","authors":"Christian Sieberichs,&nbsp;Simon Geerkens,&nbsp;Alexander Braun,&nbsp;Thomas Waschulzik","doi":"10.1007/s43681-023-00393-3","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing capabilities of machine learning systems and their potential use in safety-critical systems, ensuring high-quality data is becoming increasingly important. In this paper, we present a novel approach for the assurance of data quality. For this purpose, the mathematical basics are first discussed and the approach is presented using multiple examples. This results in the detection of data points with potentially harmful properties for the use in safety-critical systems.</p></div>","PeriodicalId":72137,"journal":{"name":"AI and ethics","volume":"4 1","pages":"131 - 139"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43681-023-00393-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI and ethics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43681-023-00393-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing capabilities of machine learning systems and their potential use in safety-critical systems, ensuring high-quality data is becoming increasingly important. In this paper, we present a novel approach for the assurance of data quality. For this purpose, the mathematical basics are first discussed and the approach is presented using multiple examples. This results in the detection of data points with potentially harmful properties for the use in safety-critical systems.

ECS:数据质量保证互动工具
随着机器学习系统能力的不断提高及其在安全关键型系统中的潜在应用,确保高质量数据变得越来越重要。在本文中,我们提出了一种保证数据质量的新方法。为此,我们首先讨论了数学基础知识,并通过多个示例介绍了该方法。这样就能检测出具有潜在有害特性的数据点,以便在安全关键型系统中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信