Hydrogen Termination Effect on SiO2/Si Interface State Density in CH3O-Molecular-Ion-Implanted Silicon Epitaxial Wafer for CMOS Image Sensors

Ryosuke Okuyama, T. Kadono, Ayumi Onaka-Masada, Akihiro Suzuki, Koji Kobayashi, S. Shigematsu, R. Hirose, Yoshihiro Koga, K. Kurita
{"title":"Hydrogen Termination Effect on SiO2/Si Interface State Density in CH3O-Molecular-Ion-Implanted Silicon Epitaxial Wafer for CMOS Image Sensors","authors":"Ryosuke Okuyama, T. Kadono, Ayumi Onaka-Masada, Akihiro Suzuki, Koji Kobayashi, S. Shigematsu, R. Hirose, Yoshihiro Koga, K. Kurita","doi":"10.1149/2162-8777/ad1c88","DOIUrl":null,"url":null,"abstract":"\n The reduction in SiO2/Si interface state density (Dit) at the SiO2/Si interface region is important for improving the performance of complementary metal-oxide semiconductor (CMOS) image sensors. The CH3O-ion-implanted region stores hydrogen and releases the stored hydrogen during the subsequent heat treatment. This study demonstrates that a CH3O-ion-implanted epitaxial silicon wafer can reduce the Dit and Pb0 center density in SiO2/Si interface regions, as analyzed by quasi-static capacitance–voltage and electron spin resonance measurements, respectively. Both Dit and Pb0 center density in the CH3O-implanted wafer decreased with increasing heat treatment temperature. Moreover, the activation energy is estimated to be 1.57 eV for the hydrogen termination reactions induced by the CH3O-ion-implanted wafer. The activation energy is close to those of hydrogen molecules and Si dangling bonds at the SiO2/Si interface. The termination effect of the CH3O-molecular-ion-implanted epitaxial silicon wafers can contribute to the high electrical performance of CMOS image sensors.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad1c88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The reduction in SiO2/Si interface state density (Dit) at the SiO2/Si interface region is important for improving the performance of complementary metal-oxide semiconductor (CMOS) image sensors. The CH3O-ion-implanted region stores hydrogen and releases the stored hydrogen during the subsequent heat treatment. This study demonstrates that a CH3O-ion-implanted epitaxial silicon wafer can reduce the Dit and Pb0 center density in SiO2/Si interface regions, as analyzed by quasi-static capacitance–voltage and electron spin resonance measurements, respectively. Both Dit and Pb0 center density in the CH3O-implanted wafer decreased with increasing heat treatment temperature. Moreover, the activation energy is estimated to be 1.57 eV for the hydrogen termination reactions induced by the CH3O-ion-implanted wafer. The activation energy is close to those of hydrogen molecules and Si dangling bonds at the SiO2/Si interface. The termination effect of the CH3O-molecular-ion-implanted epitaxial silicon wafers can contribute to the high electrical performance of CMOS image sensors.
氢终止对用于 CMOS 图像传感器的 CH3O 分子离子注入硅外延片中 SiO2/Si 界面态密度的影响
降低二氧化硅/硅界面区的二氧化硅/硅界面态密度(Dit)对于提高互补金属氧化物半导体(CMOS)图像传感器的性能非常重要。CH3O 离子注入区可储存氢气,并在随后的热处理过程中释放出所储存的氢气。本研究通过准静态电容-电压测量和电子自旋共振测量分别分析表明,CH3O 离子注入外延硅晶片可降低二氧化硅/硅界面区的 Dit 和 Pb0 中心密度。随着热处理温度的升高,CH3O 植入晶片中的 Dit 和 Pb0 中心密度都有所下降。此外,CH3O 离子注入晶片诱导的氢终止反应的活化能估计为 1.57 eV。该活化能与二氧化硅/硅界面上氢分子和硅悬键的活化能接近。CH3O分子离子植入外延硅片的终止效应有助于提高CMOS图像传感器的电气性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信