A class of analytic functions defined using fractional Ruscheweyh–Goyal derivative and its majorization properties

IF 0.9 Q2 MATHEMATICS
Gauri Shankar Paliwal, Ritu Agarwal, Beena Bundela, Jagdev Singh
{"title":"A class of analytic functions defined using fractional Ruscheweyh–Goyal derivative and its majorization properties","authors":"Gauri Shankar Paliwal,&nbsp;Ritu Agarwal,&nbsp;Beena Bundela,&nbsp;Jagdev Singh","doi":"10.1007/s13370-023-01161-6","DOIUrl":null,"url":null,"abstract":"<div><p>In the current study, we look at the majorization characteristics of the subclass <span>\\(U_{m}(\\alpha ,\\eta ,\\delta )\\)</span> of analytical functions described by the fractional Ruscheweyh–Goyal derivative. There are additional linkages made between the major findings of this study and those of prior researchers that are pertinent. Furthermore, we highlight a few novel or established implications of our primary finding.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01161-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the current study, we look at the majorization characteristics of the subclass \(U_{m}(\alpha ,\eta ,\delta )\) of analytical functions described by the fractional Ruscheweyh–Goyal derivative. There are additional linkages made between the major findings of this study and those of prior researchers that are pertinent. Furthermore, we highlight a few novel or established implications of our primary finding.

使用分数 Ruscheweyh-Goyal 导数定义的一类解析函数及其大化特性
在当前的研究中,我们研究了分数 Ruscheweyh-Goyal 导数描述的分析函数子类 \(U_{m}(\alpha ,\eta ,\delta )\) 的主要化特征。本研究的主要发现与之前研究者的发现之间还存在其他相关联系。此外,我们还强调了我们的主要发现所带来的一些新的或既定的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信