Experimental Research on Avoidance Obstacle Control for Mobile Robots Using Q-Learning (QL) and Deep Q-Learning (DQL) Algorithms in Dynamic Environments

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Actuators Pub Date : 2024-01-09 DOI:10.3390/act13010026
Vo Thanh Ha, Vo Quang Vinh
{"title":"Experimental Research on Avoidance Obstacle Control for Mobile Robots Using Q-Learning (QL) and Deep Q-Learning (DQL) Algorithms in Dynamic Environments","authors":"Vo Thanh Ha, Vo Quang Vinh","doi":"10.3390/act13010026","DOIUrl":null,"url":null,"abstract":"This study provides simulation and experimental results on techniques for avoiding static and dynamic obstacles using a deep Q-learning (DQL) reinforcement learning algorithm for a two-wheel mobile robot with independent control. This method integrates the Q-learning (QL) algorithm with a neural network, where the neural networks in the DQL algorithm act as approximators for the Q matrix table for each pair (state–action). The effectiveness of the proposed solution was confirmed through simulations, programming, and practical experimentation. A comparison was drawn between the DQL algorithm and the QL algorithm. Initially, the mobile robot was connected to the control script using the Robot Operating System (ROS). The mobile robot was programmed in Python within the ROS operating system, and the DQL controller was programmed in Gazebo software. The mobile robot underwent testing in a workshop with various experimental scenarios considered. The DQL controller displayed improvements in computation time, convergence time, trajectory planning accuracy, and obstacle avoidance. As a result, the DQL controller surpassed the QL algorithm in terms of performance.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13010026","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides simulation and experimental results on techniques for avoiding static and dynamic obstacles using a deep Q-learning (DQL) reinforcement learning algorithm for a two-wheel mobile robot with independent control. This method integrates the Q-learning (QL) algorithm with a neural network, where the neural networks in the DQL algorithm act as approximators for the Q matrix table for each pair (state–action). The effectiveness of the proposed solution was confirmed through simulations, programming, and practical experimentation. A comparison was drawn between the DQL algorithm and the QL algorithm. Initially, the mobile robot was connected to the control script using the Robot Operating System (ROS). The mobile robot was programmed in Python within the ROS operating system, and the DQL controller was programmed in Gazebo software. The mobile robot underwent testing in a workshop with various experimental scenarios considered. The DQL controller displayed improvements in computation time, convergence time, trajectory planning accuracy, and obstacle avoidance. As a result, the DQL controller surpassed the QL algorithm in terms of performance.
在动态环境中使用 Q-Learning (QL) 和 Deep Q-Learning (DQL) 算法实现移动机器人避障控制的实验研究
本研究针对具有独立控制能力的双轮移动机器人,使用深度 Q 学习(DQL)强化学习算法提供了避开静态和动态障碍物技术的模拟和实验结果。该方法将 Q 学习(QL)算法与神经网络相结合,其中 DQL 算法中的神经网络作为每一对(状态-动作)的 Q 矩阵表的近似值。通过模拟、编程和实际实验,证实了所提解决方案的有效性。对 DQL 算法和 QL 算法进行了比较。最初,移动机器人通过机器人操作系统(ROS)连接到控制脚本。移动机器人在 ROS 操作系统中用 Python 编程,DQL 控制器用 Gazebo 软件编程。移动机器人在车间里进行了测试,考虑了各种实验场景。DQL 控制器在计算时间、收敛时间、轨迹规划精度和避障能力方面都有所改进。因此,DQL 控制器的性能超过了 QL 算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信