Inertia II: The local induced inertia effects
G. Ter-Kazarian
{"title":"Inertia II: The local induced inertia effects","authors":"G. Ter-Kazarian","doi":"10.52526/25792776-23.70.2-212","DOIUrl":null,"url":null,"abstract":"Inthe frameworkof localMSp-SUSYtheory,which is extensionof global, socalled,master space (MSp)-SUSYtheory(Ter-Kazarian, 2023, 2024),weaddress theacceleratedmotionand inertiaeffects. The superspace isadirect sumof curvedbackgrounddouble spacesM4⊕MSp,withan inclusionof additional fermioniccoordinates(Θ, ¯ Θ) inducedbythespinors(θ,¯ θ),whichrefertoMSp.Wetakethe Lorentzgroupasour structuregroupinorder torecover rigidsuperspaceasa limitingsolutiontoour dynamicaltheory.ThelocalMSp-SUSYisconceivedasaquantumfieldtheorywhoseactionincludesthe fictitiousgravitationfieldterm,wherethegravitoncoexistswithafermionicfieldof, so-called,gravitino (sparticle) describedby theRarita-Scwinger kinetic term. Asignificant differencebetween standard theoriesof supergravityandthelocalMSp-SUSYtheoryisthatacouplingof supergravitywithmatter superfields no longer holds. We argue that adeformation/(distortionof local internal properties) of MSp, istheoriginof theabsoluteacceleration(aabs=0)andinertiaeffects(fictitiousgraviton). These gravitational fieldshadnosourcesandweregeneratedbycoordinate transformations. Acurvatureof MSparisesentirelyduetotheinertialpropertiesoftheLorentz-rotatedframeof interest.Thisrefersto theparticleof interestitself,withoutrelationtoothermatterfields,sothatthiscanbegloballyremoved byappropriatecoordinatetransformations. ThesupervielbeinEA(z),beinganalogueofCartan’s local frame, isthedynamicalvariableof superspaceformulation,whichidentifiesthetetradfielde ˆ a ˆ m(X)and theRarita-Schwingerfields. Theconnectionis theseconddynamicalvariable inthis theory. Thefield e ˆ a ˆ m(X)plays the roleof agaugefieldassociatedwith local transformations (fictitious graviton). The fictitiousgravitinoisthegaugefieldrelatedtolocalsupersymmetry.Thetwofieldsdifferintheirspin: 2 forthegraviton,3/2forthegravitino.Thesetwoparticlesarethetwobosonicandfermionicstatesofa gaugeparticleinthecurvedbackgroundspacesM4andMSp,respectively,orviceversa.Following(TerKazarian, 2012), inthe frameworkof classical physics,wediscuss the inertiaeffectsbygoingbeyond thehypothesisof locality, andderive theexplicit formof thevierbiene ˆ a ˆ m( )≡(ea m( ),e a m( )). This theoryfurnishesjustificationfortheintroductionoftheweakprincipleofequivalence(WPE).Wederive ageneralexpressionoftherelativisticinertial forceexertedontheextendedspinningbodymovinginthe Rieman-Cartanspace.","PeriodicalId":412578,"journal":{"name":"Communications of the Byurakan Astrophysical Observatory","volume":"38 49","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the Byurakan Astrophysical Observatory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52526/25792776-23.70.2-212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Inthe frameworkof localMSp-SUSYtheory,which is extensionof global, socalled,master space (MSp)-SUSYtheory(Ter-Kazarian, 2023, 2024),weaddress theacceleratedmotionand inertiaeffects. The superspace isadirect sumof curvedbackgrounddouble spacesM4⊕MSp,withan inclusionof additional fermioniccoordinates(Θ, ¯ Θ) inducedbythespinors(θ,¯ θ),whichrefertoMSp.Wetakethe Lorentzgroupasour structuregroupinorder torecover rigidsuperspaceasa limitingsolutiontoour dynamicaltheory.ThelocalMSp-SUSYisconceivedasaquantumfieldtheorywhoseactionincludesthe fictitiousgravitationfieldterm,wherethegravitoncoexistswithafermionicfieldof, so-called,gravitino (sparticle) describedby theRarita-Scwinger kinetic term. Asignificant differencebetween standard theoriesof supergravityandthelocalMSp-SUSYtheoryisthatacouplingof supergravitywithmatter superfields no longer holds. We argue that adeformation/(distortionof local internal properties) of MSp, istheoriginof theabsoluteacceleration(aabs=0)andinertiaeffects(fictitiousgraviton). These gravitational fieldshadnosourcesandweregeneratedbycoordinate transformations. Acurvatureof MSparisesentirelyduetotheinertialpropertiesoftheLorentz-rotatedframeof interest.Thisrefersto theparticleof interestitself,withoutrelationtoothermatterfields,sothatthiscanbegloballyremoved byappropriatecoordinatetransformations. ThesupervielbeinEA(z),beinganalogueofCartan’s local frame, isthedynamicalvariableof superspaceformulation,whichidentifiesthetetradfielde ˆ a ˆ m(X)and theRarita-Schwingerfields. Theconnectionis theseconddynamicalvariable inthis theory. Thefield e ˆ a ˆ m(X)plays the roleof agaugefieldassociatedwith local transformations (fictitious graviton). The fictitiousgravitinoisthegaugefieldrelatedtolocalsupersymmetry.Thetwofieldsdifferintheirspin: 2 forthegraviton,3/2forthegravitino.Thesetwoparticlesarethetwobosonicandfermionicstatesofa gaugeparticleinthecurvedbackgroundspacesM4andMSp,respectively,orviceversa.Following(TerKazarian, 2012), inthe frameworkof classical physics,wediscuss the inertiaeffectsbygoingbeyond thehypothesisof locality, andderive theexplicit formof thevierbiene ˆ a ˆ m( )≡(ea m( ),e a m( )). This theoryfurnishesjustificationfortheintroductionoftheweakprincipleofequivalence(WPE).Wederive ageneralexpressionoftherelativisticinertial forceexertedontheextendedspinningbodymovinginthe Rieman-Cartanspace.
惯性 II:局部诱导惯性效应
局域MSp-SUSY理论是全局主空间(MSp)-SUSY理论的延伸(Ter-Kazarian,2023,2024),我们在局域MSp-SUSY理论的框架内讨论了加速运动和惯性效应。超空间是弯曲背景双空间 M4⊕MSp 的直接总和,其中包含了由旋子(θ, ¯Θ)诱导的额外费米子坐标(Θ, ¯Θ),而旋子(θ, ¯θ)是指向 MSp 的。我们把洛伦兹群作为我们的结构群,以恢复严格的超空间作为我们动力学理论的极限解决方案。局域MSp-SUSY被认为是一种量场理论,其作用包括虚构引力场项,其中引力子与拉里塔-斯克温格动力学项描述的所谓引力子(粒子)的非离子场共存。标准超引力理论与局域MSp-SUSY理论的重要区别在于,超引力与物质超场的耦合不再成立。我们认为,MSp的变形/(局部内部特性的扭曲)是绝对加速度(aabs=0)和惰性效应(虚构引力)的起源。这些引力场没有来源,是通过坐标变换产生的。这是指相关粒子本身,与其他物质场无关,因此可以通过适当的坐标变换在全球范围内消除。EA(z)中的超空间是卡坦局部框架的类似物,是超空间变换的动态变量,它标识了radfielde ˆ a ˆ m(X)和Rarita-Schwinger场。连接是这一理论中最重要的动力变量。e ˆ a ˆ m(X)场扮演着与局部变换(虚引力子)相关的量场的角色。虚构引力子是与局域超对称相关的量场。这两个量场的自旋不同:引力子为 2,引力子为 3/2。继特尔卡扎里安(TerKazarian,2012)之后,我们在经典物理学框架内讨论了惰性效应,超越了局域性假说,并得出了惰性双烯的显式形式:a ˆ m( )≡(ea m( ),e a m( ))。这一理论为引入弱等效原理(WPE)提供了合理解释,并给出了在黎曼-卡尔坦空间中运动的延伸旋转体所受相对论惯性力的一般表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。