{"title":"Adaptive Integration of Convex Functions of One Real Variable","authors":"S. Wa̧sowicz","doi":"10.2478/amsil-2023-0028","DOIUrl":null,"url":null,"abstract":"Abstract We present an adaptive method of approximate integration of convex (as well as concave) functions based on a certain refinement of the celebrated Hermite–Hadamard inequality. Numerical experiments are performed and the role of harmonic numbers is shown.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"33 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We present an adaptive method of approximate integration of convex (as well as concave) functions based on a certain refinement of the celebrated Hermite–Hadamard inequality. Numerical experiments are performed and the role of harmonic numbers is shown.