Bounds of Two Toughnesses and Binding Numbers for Star Factors

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Yujia Gao, Zhen Ji, Xiaojie Sun, Qinghe Tong
{"title":"Bounds of Two Toughnesses and Binding Numbers for Star Factors","authors":"Yujia Gao, Zhen Ji, Xiaojie Sun, Qinghe Tong","doi":"10.1142/s0219265923500329","DOIUrl":null,"url":null,"abstract":"For a set [Formula: see text] of connected graphs, a spanning subgraph [Formula: see text] of a graph [Formula: see text] is an [Formula: see text]-factor if every component of [Formula: see text] is isomorphic to some member of [Formula: see text]. In this paper, we give a criterion for the existence of tight toughness, isolated toughness and binding number bounds in a graph of a strong [Formula: see text]-star factor, [Formula: see text]-factor and [Formula: see text]-star factor. Moreover, we show that the bounds of the sufficient conditions are sharp.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"64 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265923500329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

For a set [Formula: see text] of connected graphs, a spanning subgraph [Formula: see text] of a graph [Formula: see text] is an [Formula: see text]-factor if every component of [Formula: see text] is isomorphic to some member of [Formula: see text]. In this paper, we give a criterion for the existence of tight toughness, isolated toughness and binding number bounds in a graph of a strong [Formula: see text]-star factor, [Formula: see text]-factor and [Formula: see text]-star factor. Moreover, we show that the bounds of the sufficient conditions are sharp.
两种韧性的界限和星形因子的结合数
对于一个连通图集[式:见文],如果[式:见文]的每个分量都与[式:见文]的某个成员同构,则[式:见文]的跨子图[式:见文]是[式:见文]-因子。本文给出了强[式:见文本]-星因子、[式:见文本]-因子和[式:见文本]-星因子图中存在紧韧度、孤立韧度和结合数边界的判据。此外,我们还证明了充分条件的边界是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOURNAL OF INTERCONNECTION NETWORKS
JOURNAL OF INTERCONNECTION NETWORKS COMPUTER SCIENCE, THEORY & METHODS-
自引率
14.30%
发文量
121
期刊介绍: The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信