Exploring the Effectiveness of Machine Learning Algorithms in Image Forgery Detection

Niyati Patel, Premal J.Patel
{"title":"Exploring the Effectiveness of Machine Learning Algorithms in Image Forgery Detection","authors":"Niyati Patel, Premal J.Patel","doi":"10.32628/cseit2390669","DOIUrl":null,"url":null,"abstract":"This study investigates the efficacy of various machine learning algorithms for detecting image forgery, a prevalent issue in the realm of digital media manipulation. The research focuses on assessing the performance of these algorithms in accurately identifying instances of image tampering, aiming to contribute valuable insights to the field of digital forensics. The evaluation encompasses a diverse set of machine learning techniques, including but not limited to convolutional neural networks (CNNs), support vector machines (SVMs), and decision trees. Through rigorous experimentation and comparative analysis, the research aims to discern the strengths and limitations of each algorithm in the context of image forgery detection. The findings of this study hold significance for enhancing the capabilities of digital forensics tools, thereby aiding in the mitigation of fraudulent activities, and ensuring the integrity of visual content in the digital' domain.","PeriodicalId":313456,"journal":{"name":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","volume":"48 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/cseit2390669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the efficacy of various machine learning algorithms for detecting image forgery, a prevalent issue in the realm of digital media manipulation. The research focuses on assessing the performance of these algorithms in accurately identifying instances of image tampering, aiming to contribute valuable insights to the field of digital forensics. The evaluation encompasses a diverse set of machine learning techniques, including but not limited to convolutional neural networks (CNNs), support vector machines (SVMs), and decision trees. Through rigorous experimentation and comparative analysis, the research aims to discern the strengths and limitations of each algorithm in the context of image forgery detection. The findings of this study hold significance for enhancing the capabilities of digital forensics tools, thereby aiding in the mitigation of fraudulent activities, and ensuring the integrity of visual content in the digital' domain.
探索机器学习算法在图像伪造检测中的有效性
本研究调查了各种机器学习算法在检测图像伪造方面的功效,图像伪造是数字媒体篡改领域的一个普遍问题。研究重点是评估这些算法在准确识别图像篡改实例方面的性能,旨在为数字取证领域贡献有价值的见解。评估涉及多种机器学习技术,包括但不限于卷积神经网络(CNN)、支持向量机(SVM)和决策树。通过严格的实验和比较分析,研究旨在找出每种算法在图像伪造检测方面的优势和局限性。本研究的发现对于提高数字取证工具的能力,从而帮助减少欺诈活动,确保数字领域视觉内容的完整性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信