{"title":"Adaptive Personalized Randomized Response Method Based on Local Differential Privacy","authors":"Dongyan Zhang, Lili Zhang, Zhiyong Zhang, Zhongya Zhang","doi":"10.4018/ijisp.335225","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of adopting the same level of privacy protection for sensitive data in the process of data collection and ignoring the difference in privacy protection requirements, the authors propose an adaptive personalized randomized response method based on local differential privacy (LDP-APRR). LDP-APRR determines the sensitive level through the user scoring strategy, introduces the concept of sensitive weights for adaptive allocation of privacy budget, and realizes the personalized privacy protection of sensitive attributes and attribute values. To verify the distorted data availability, LDP-APRR is applied to frequent items mining scenarios and compared with mining associations with secrecy konstraints (MASK), and grouping-based randomization for privacy-preserving frequent pattern mining (GR-PPFM). Results show that the LDP-APRR achieves personalized protection of sensitive attributes and attribute values with user participation, and the maxPrivacy and avgPrivacy are improved by 1.2% and 4.3%, respectively, while the availability of distorted data is guaranteed.","PeriodicalId":44332,"journal":{"name":"International Journal of Information Security and Privacy","volume":"78 9","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijisp.335225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the problem of adopting the same level of privacy protection for sensitive data in the process of data collection and ignoring the difference in privacy protection requirements, the authors propose an adaptive personalized randomized response method based on local differential privacy (LDP-APRR). LDP-APRR determines the sensitive level through the user scoring strategy, introduces the concept of sensitive weights for adaptive allocation of privacy budget, and realizes the personalized privacy protection of sensitive attributes and attribute values. To verify the distorted data availability, LDP-APRR is applied to frequent items mining scenarios and compared with mining associations with secrecy konstraints (MASK), and grouping-based randomization for privacy-preserving frequent pattern mining (GR-PPFM). Results show that the LDP-APRR achieves personalized protection of sensitive attributes and attribute values with user participation, and the maxPrivacy and avgPrivacy are improved by 1.2% and 4.3%, respectively, while the availability of distorted data is guaranteed.
期刊介绍:
As information technology and the Internet become more and more ubiquitous and pervasive in our daily lives, there is an essential need for a more thorough understanding of information security and privacy issues and concerns. The International Journal of Information Security and Privacy (IJISP) creates and fosters a forum where research in the theory and practice of information security and privacy is advanced. IJISP publishes high quality papers dealing with a wide range of issues, ranging from technical, legal, regulatory, organizational, managerial, cultural, ethical and human aspects of information security and privacy, through a balanced mix of theoretical and empirical research articles, case studies, book reviews, tutorials, and editorials. This journal encourages submission of manuscripts that present research frameworks, methods, methodologies, theory development and validation, case studies, simulation results and analysis, technological architectures, infrastructure issues in design, and implementation and maintenance of secure and privacy preserving initiatives.