Preparation of PVDF/PVA composite films with micropatterned structures on light-cured 3D printed molds for hydrophilic modification of PVDF

IF 1.1 4区 工程技术 Q4 ENGINEERING, CHEMICAL
Shengkai Li, Zhengyang Jin, Yutong Chen, Changpeng Shan, Yan Xu
{"title":"Preparation of PVDF/PVA composite films with micropatterned structures on light-cured 3D printed molds for hydrophilic modification of PVDF","authors":"Shengkai Li, Zhengyang Jin, Yutong Chen, Changpeng Shan, Yan Xu","doi":"10.1515/ipp-2023-4464","DOIUrl":null,"url":null,"abstract":"Abstract Polyvinylidene fluoride (PVDF) is widely used in biotechnology due to its excellent biocompatibility, high temperature and pressure resistance, and outstanding mechanical properties. However, the hydrophobic nature of PVDF surface hinders the attachment of biological proteins. In order to enhance the wettability of PVDF surfaces, this study prepared composite films by blending PVDF with polyvinyl alcohol (PVA), and micro-patterned structures were fabricated on the material surface using a mold-replication method based on digital light processing (DLP) photopolymerization printing technology. A series of characterization techniques including surface morphology analysis, chemical composition analysis, and wettability testing were employed. The surface morphology analysis results indicated that the method of using DLP photopolymerization technology to print mold replicas and create micro-patterned structures was indeed effective in creating micro-patterned structures on both PVDF and PVDF/PVA composite films. The chemical composition analysis showed that the spin-coating of PVDF powder material resulted in PVDF β-phase crystalline structure, which has a positive effect on cell growth. Furthermore, the introduction of hydrophilic groups was achieved by mixing PVDF with PVA. Wetting test results indicate that the incorporation of the hydrophilic material PVA and micro-patterned surfaces both contribute to the improved hydrophilicity of the material. The water contact angle of the micro-patterned PVDF/PVA composite film reached 30.8°, exhibiting excellent hydrophilic properties. This study achieved the optimization of PVDF surface properties through micro-patterned surface modification and material composition design, providing novel insights for the further development of PVDF materials in the field of biotechnology.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4464","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Polyvinylidene fluoride (PVDF) is widely used in biotechnology due to its excellent biocompatibility, high temperature and pressure resistance, and outstanding mechanical properties. However, the hydrophobic nature of PVDF surface hinders the attachment of biological proteins. In order to enhance the wettability of PVDF surfaces, this study prepared composite films by blending PVDF with polyvinyl alcohol (PVA), and micro-patterned structures were fabricated on the material surface using a mold-replication method based on digital light processing (DLP) photopolymerization printing technology. A series of characterization techniques including surface morphology analysis, chemical composition analysis, and wettability testing were employed. The surface morphology analysis results indicated that the method of using DLP photopolymerization technology to print mold replicas and create micro-patterned structures was indeed effective in creating micro-patterned structures on both PVDF and PVDF/PVA composite films. The chemical composition analysis showed that the spin-coating of PVDF powder material resulted in PVDF β-phase crystalline structure, which has a positive effect on cell growth. Furthermore, the introduction of hydrophilic groups was achieved by mixing PVDF with PVA. Wetting test results indicate that the incorporation of the hydrophilic material PVA and micro-patterned surfaces both contribute to the improved hydrophilicity of the material. The water contact angle of the micro-patterned PVDF/PVA composite film reached 30.8°, exhibiting excellent hydrophilic properties. This study achieved the optimization of PVDF surface properties through micro-patterned surface modification and material composition design, providing novel insights for the further development of PVDF materials in the field of biotechnology.
在光固化 3D 打印模具上制备具有微图案结构的 PVDF/PVA 复合薄膜,用于对 PVDF 进行亲水改性
摘要 聚偏二氟乙烯(PVDF)具有优异的生物相容性、耐高温和耐高压性以及出色的机械性能,因此被广泛应用于生物技术领域。然而,PVDF 表面的疏水性阻碍了生物蛋白质的附着。为了提高 PVDF 表面的润湿性,本研究将 PVDF 与聚乙烯醇(PVA)混合制备成复合薄膜,并利用基于数字光处理(DLP)光聚合印刷技术的模具复制方法在材料表面制作了微图案结构。采用了一系列表征技术,包括表面形态分析、化学成分分析和润湿性测试。表面形貌分析结果表明,利用 DLP 光聚合印刷技术复制模具并制作微图案结构的方法确实能有效地在 PVDF 和 PVDF/PVA 复合薄膜上制作微图案结构。化学成分分析表明,PVDF 粉末材料的旋涂形成了 PVDF β 相结晶结构,对细胞生长有积极作用。此外,通过将 PVDF 与 PVA 混合,还引入了亲水基团。润湿测试结果表明,亲水材料 PVA 和微图案表面的加入都有助于提高材料的亲水性。微图案 PVDF/PVA 复合薄膜的水接触角达到了 30.8°,表现出优异的亲水性能。该研究通过微图案表面改性和材料成分设计实现了 PVDF 表面性能的优化,为 PVDF 材料在生物技术领域的进一步发展提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Polymer Processing
International Polymer Processing 工程技术-高分子科学
CiteScore
2.20
自引率
7.70%
发文量
62
审稿时长
6 months
期刊介绍: International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信